Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Two-dimensional reductions of the Kadomtsev–Petviashvili(KP)–Whitham system, namely the overdetermined Whitham modulation system for five dependent variables that describe the periodic solutions of the KP equation, are studied and characterized. Three different reductions are considered corresponding to modulations that are independent ofx, independent ofy, and oft(i.e. stationary), respectively. Each of these reductions still describes dynamic, two-dimensional spatial configurations since the modulated cnoidal wave, generically, has a nonzero speed and a nonzero slope in thexyplane. In all three of these reductions, the integrability of the resulting systems of equations is proven, and various other properties are elucidated. Compatibility with conservation of waves yields a reduction in the number of dependent variables to two, three and four, respectively. As a byproduct of the stationary case, the Whitham modulation system for the classical Boussinesq equation is explicitly obtained.more » « less
- 
            Abstract We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability.more » « less
- 
            Abstract The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed.more » « less
- 
            Abstract The semiclassical (small dispersion) limit of the focusing nonlinear Schrödinger equation with periodic initial conditions (ICs) is studied analytically and numerically. First, through a comprehensive set of numerical simulations, it is demonstrated that solutions arising from a certain class of ICs, referred to as “periodic single‐lobe” potentials, share the same qualitative features, which also coincide with those of solutions arising from localized ICs. The spectrum of the associated scattering problem in each of these cases is then numerically computed, and it is shown that such spectrum is confined to the real and imaginary axes of the spectral variable in the semiclassical limit. This implies that all nonlinear excitations emerging from the input have zero velocity, and form a coherent nonlinear condensate. Finally, by employing a formal Wentzel‐Kramers‐Brillouin expansion for the scattering eigenfunctions, asymptotic expressions for the number and location of the bands and gaps in the spectrum are obtained, as well as corresponding expressions for the relative band widths and the number of “effective solitons.” These results are shown to be in excellent agreement with those from direct numerical computation of the eigenfunctions. In particular, a scaling law is obtained showing that the number of effective solitons is inversely proportional to the small dispersion parameter.more » « less
- 
            Abstract The Whitham modulation equations for the defocusing nonlinear Schrödinger (NLS) equation in two, three and higher spatial dimensions are derived using a two-phase ansatz for the periodic traveling wave solutions and by period-averaging the conservation laws of the NLS equation. The resulting Whitham modulation equations are written in vector form, which allows one to show that they preserve the rotational invariance of the NLS equation, as well as the invariance with respect to scaling and Galilean transformations, and to immediately generalize the calculations from two spatial dimensions to three. The transformation to Riemann-type variables is described in detail; the harmonic and soliton limits of the Whitham modulation equations are explicitly written down; and the reduction of the Whitham equations to those for the radial NLS equation is explicitly carried out. Finally, the extension of the theory to higher spatial dimensions is briefly outlined. The multidimensional NLS-Whitham equations obtained here may be used to study large amplitude wavetrains in a variety of applications including nonlinear photonics and matter waves.more » « less
- 
            Abstract We write down and characterize a large class of nonsingular multi-soliton solutions of the defocusing Davey–Stewartson II equation. In particular we study their asymptotics at space infinities as well as their interaction patterns in the xy -plane, and we identify several subclasses of solutions. Many of these solutions describe phenomena of soliton resonance and web structure. We identify a subclass of solutions that is the analogue of the soliton solutions of the Kadomtsev–Petviashvili II equation. In addition to this subclass, however, we show that more general solutions exist, describing phenomena that have no counterpart in the Kadomtsev–Petviashvili equation, including V-shape solutions and soliton reconnection.more » « less
- 
            Abstract We characterize initial value problems for the defocusing Manakov system (coupled two-component nonlinear Schrödinger equation) with nonzero background and well-defined spatial parity symmetry (i.e., when each of the components of the solution is either even or odd), corresponding to boundary value problems on the half line with Dirichlet or Neumann boundary conditions at the origin. We identify the symmetries of the eigenfunctions arising from the spatial parity of the solution, and we determine the corresponding symmetries of the scattering data (reflection coefficients, discrete spectrum and norming constants). All parity induced symmetries are found to be more complicated than in the scalar (i.e., one-component) case. In particular, we show that the discrete eigenvalues giving rise to dark solitons arise in symmetric quartets, and those giving rise to dark–bright solitons in symmetric octets. We also characterize the differences between the purely even or purely odd case (in which both components are either even or odd functions of x ) and the ‘mixed parity’ cases (in which one component is even while the other is odd). Finally, we show how, in each case, the spatial symmetry yields a constraint on the possible existence of self-symmetric eigenvalues, corresponding to stationary solitons, and we study the resulting behavior of solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
