skip to main content


Title: Dynamic pattern selection in polymorphic elastocapillarity
Drying of fine hair and fibers induces dramatic capillary-driven deformation, with important implications on natural phenomena and industrial processes. We recently observed peculiar self-assembly of hair bundles into various distinct patterns depending on the interplay between the bundle length and the liquid drain rate. Here, we propose a mechanism for this pattern selection, and derive and validate theoretical scaling laws for the polymorphic self-assembly of polygonal hair bundles. Experiments are performed by submerging the bundles into a liquid bath, then draining down the liquid. Depending on the interplay between the drain rates and the length of the fibers, we observe the bundles morphing into stars (having concave sides), polygons (having straight edges and rounded corners), or circles. The mechanism of self-assembly at the high drain regime is governed by two sequential stages. In the first stage of the high drain rate regime, the liquid covers the outside of the bundles, and drainage from inside the bundle does not play a role in the self-assembly due to the high viscous stress. The local pressure at the corners of the wet bundles compresses the fibers inward blunting the corners, and the internal lubrication facilitates fiber rearrangement. In the second stage, the liquid is slowly draining from within the fiber spacing, and the negative capillary pressure at the perimeter causes the fibers to tightly pack. In the slow drainage regime, the first stage is absent, and the fibers slowly aggregate without initial dynamic rearrangement. Understanding the mechanism of dynamic elastocapillarity offers insights for studying the complicated physics of wet granular drying.  more » « less
Award ID(s):
1825758
NSF-PAR ID:
10354232
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
2
ISSN:
1744-683X
Page Range / eLocation ID:
262 to 271
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypothesis: The dip coating of suspensions made of monodisperse non-Brownian spherical particles dispersed in a Newtonian fluid leads to different coating regimes depending on the ratio of the particle diameter to the thickness of the film entrained on the substrate. In particular, dilute particles dispersed in the liquid are entrained only above a threshold value of film thickness. In the case of anisotropic particles, in particular fibers, the smallest characteristic dimension will control the entrainment of the particle. Furthermore, it is possible to control the orientation of the anisotropic particles depending on the substrate geometry. In the thick film regime, the Landau-Levich-Derjaguin model remains valid if one account for the change in viscosity. Experiment: To test the hypotheses, we performed dip-coating experiments with dilute suspensions of non-Brownian fibers with different length-to-diameter aspect ratios. We characterize the number of fibers entrained on the surface of the substrate as a function of the withdrawal velocity, allowing us to estimate a threshold capillary number below which all the particles remain in the liquid bath. Besides, we measure the angular distribution of the entrained fibers for two different substrate geometries: flat plates and cylindrical rods. We then measure the film thickness for more concentrated fiber suspensions. Findings: The entrainment of the fibers on a flat plate and a cylindrical rod is primarily controlled by the smaller characteristic length of the fibers: their diameter. At first order, the entrainment threshold scales similarly to that of spherical particles. The length of the fibers only appears to have a minor influence on the entrainment threshold. No preferential alignment is observed for non-Brownian fibers on a flat plate, except for very thin films, whereas the fibers tend to align themselves along the axis of a cylindrical rod for a large enough ratio of the fiber length to the radius of the cylindrical rod. The Landau-Levich-Derjaguin law is recovered for more concentrated suspension by introducing an effective capillary number accounting for the change in viscosity. 
    more » « less
  2. null (Ed.)
    Fluidic artificial muscles (FAMs), also known as McKibben actuators, are a class of fiber-reinforced soft actuators that can be pneumatically or hydraulically pressurized to produce muscle-like contraction and force generation. When multiple FAMs are bundled together in parallel and selectively pressurized, they can act as a multi-chambered actuator with bioinspired variable recruitment capability. The variable recruitment bundle consists of motor units (MUs)—groups of one of more FAMs—that are independently pressurized depending on the force demand, similar to how groups of muscle fibers are sequentially recruited in biological muscles. As the active FAMs contract, the inactive/low-pressure units are compressed, causing them to buckle outward, which increases the spatial envelope of the actuator. Additionally, a FAM compressed past its individual free strain applies a force that opposes the overall force output of active FAMs. In this paper, we propose a model to quantify this resistive force observed in inactive and low-pressure FAMs and study its implications on the performance of a variable recruitment bundle. The resistive force behavior is divided into post-buckling and post-collapse regions and a piecewise model is devised. An empirically-based correction method is proposed to improve the model to fit experimental data. Analysis of a bundle with resistive effects reveals a phenomenon, unique to variable recruitment bundles, defined as free strain gradient reversal. 
    more » « less
  3. null (Ed.)
    The brushing of hair requires a complex un- derstanding of the interaction between soft hair fibers and the soft brushing device. It is also reliant on having both visual and tactile information. Guided by a recently developed model of soft tangled fiber bundles, we develop a method for optimizing hair brushing by robots which seeks to minimize pain and avoid the build up of jammed entanglements. Using an experimental setup with a custom force measuring sensor and a soft brush end effector, we perform closed-loop experiments on hair brushing of different curliness. This utilizes computer vision to assess the curliness of the hair, after which the hair is brushed using a closed loop controller. To demonstrate this approach hair brushing experiments have been performed on a wide variety of wigs with amount of curl. In addition to hair brushing the insight provided by this model driven approach could be applied to brushing of fibers for textiles, or animal fibers. 
    more » « less
  4. Rigid wet cooling media is a key component of direct and indirect evaporative cooling systems. Evaporation is the process of a substance in a liquid state changing to a gaseous state. When water evaporates only water molecules get evaporated and the other chemicals in the water are left behind on the surface as residue. Many studies have been conducted on how the change in air flow velocity, media depth, porosity and water distribution affect performance of the cooling system. The operational efficiency of the cooling media varies over its life cycle and depends primarily on temperature and speed of inlet air, water distribution system, type of pad and dimension of the pad.Although evaporative cooling when implemented with air-side economization enables efficiency gains, a trade-off between the system maintenance and its operational efficiency exists. In this study, the primary objective is to determine how calcium scale affects the overall performance of the cooling pad and the water system. Areas of the pad that are not wetted effectively allow air to pass through without being cooled and the edges between wetted and dry surface establish sites for scale formation. An Accelerated Degradation Testing (ADT) by rapid wetting and drying on the media pads at elevated levels of calcium is designed and conducted on the cellulose wet cooling media pad. This research focuses on monitoring the degradation that occurs over its usage and establish a key maintenance parameter for water used in media pad.As a novel study, preliminary tests were mandatory because there were no established standards for media pad degradation testing. Sump water conductivity is identified as the key maintenance parameter for monitoring sump replenishing and draining cycles which will result in reduced water usage. The average water conductivity in the sump during wetting cycles increases monotonically when ADT was performed on a new media pad. An empirical relationship between sump water conductivity and number of wetting cycles is proposed. This information will be very helpful for the manufacturers to guide their customers for maintenance of the media pad and sump water drain cycles. 
    more » « less
  5. We examine if the bundling of semiconducting carbon nanotubes (CNTs) can increase the transconductance and on-state current density of field effect transistors (FETs) made from arrays of aligned, polymer-wrapped CNTs. Arrays with packing density ranging from 20 to 50 bundles  μm −1 are created via tangential flow interfacial self-assembly, and the transconductance and saturated on-state current density of FETs with either (i) strong ionic gel gates or (ii) weak 15 nm SiO 2 back gates are measured vs the degree of bundling. Both transconductance and on-state current significantly increase as median bundle height increases from 2 to 4 nm, but only when the strongly coupled ionic gel gate is used. Such devices tested at −0.6 V drain voltage achieve transconductance as high as 50 μS per bundle and 2 mS  μm −1 and on-state current as high as 1.7 mA  μm −1 . At low drain voltages, the off-current also increases with bundling, but on/off ratios of ∼10 5 are still possible if the largest (95th percentile) bundles in an array are limited to ∼5 nm in size. Radio frequency devices with strong, wraparound dielectric gates may benefit from increased device performance by using moderately bundled as opposed to individualized CNTs in arrays. 
    more » « less