The binding of linear diamine counterions with different methylene chain lengths to the amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counterions were all linear diamines with varying spacer chain lengths between the two amine functional groups. The sodium counterion was studied as well. Results showed that when the length of the counterion methylene chain was increased, the surfactants’ critical micelle concentrations (CMC) decreased. This decrease was attributed to diamines with longer methylene chains binding to multiple surfactant monomers below the CMC and thus acting as templating agents for the formation of micelles. The entropic hydrophobic effect and differences in diamine counterion charge also contributed to the size of the micelles and the surfactants’ CMCs in the solution. NMR diffusion measurements showed that the micelles formed by both surfactants were largest when 1,4-diaminobutane counterions were present in the solution. This amine also had the largest mole fraction of micelle-bound counterions. Finally, the und-NL micelles were larger than the und-IL micelles when 1,4-diaminobutane counterions were bound to the micelle surface. A model was proposed in which this surfactant formed non-spherical aggregates with both the surfactant molecules’ hydrocarbon chains and n-butyl amino acid side chains pointing toward the micelle core. The und-IL micelles, in contrast, were smaller and likely spherically shaped.
more »
« less
Comparison of Chiral Recognition of Binaphthyl Derivatives with l-Undecyl-Leucine Surfactants in the Presence of Arginine and Sodium Counterions
Abstract In this study the chiral selectivity of l-undecyl-leucine (und-leu) for binapthyl derivatives was examined with the use of arginine and sodium counterions at pH’s ranging from 7 to 11. The objective of this project was to investigate whether a cationic amino acid, such as arginine would achieve enhanced chiral selectivity when utilized as the counterion in the place of sodium in micellar electrokinetic chromatography. The data indicate that und-leu has significantly improved chiral selectivity toward 1,1′-binaphthyl-2,2′-diyl hydrogenphosphate (BNP) enantiomers in the presence of arginine counterions in comparison to sodium and that, at least in the case of this study, the enantiomeric form of the arginine did not appear to play a role in the chiral selectivity. The maximum resolution (Rs) achieved for BNP when sodium was used as the counterion was ~0.6. However, when arginine was used as the counterion, the maximum resolution for BNP was ~4.1. This was an increase in resolution of ~ 7-fold. However, no significant difference was observed for the enantiomers of 1,1′-bi-2-naphthol. In order to learn more about why this might be the case, NMR studies were conducted to examine what role the counterion might play in enantiomeric recognition.
more »
« less
- Award ID(s):
- 1709680
- PAR ID:
- 10354264
- Date Published:
- Journal Name:
- Journal of Chromatographic Science
- Volume:
- 57
- Issue:
- 1
- ISSN:
- 0021-9665
- Page Range / eLocation ID:
- 54 to 62
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to poly-sodium N-undecanoyl-(L)-Leucylvalinate, poly (SULV), were investigated using molecular dynamics simulations. Micellar electrokinetic chromatography (MEKC) has previously shown that when separating the enantiomers of these aforementioned Dansyl amino acids, the L-enantiomers bind stronger to poly (SULV) than the D-enantiomers. This study aims to investigate the molecular interactions that govern chiral recognition in these systems using computational methods. This study reveals that the computationally-calculated binding free energy values for Dansyl enantiomers binding to poly (SULV) are in agreement with the enantiomeric order produced in experimental MEKC studies. The L-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly(SULV) yielded binding free energy values of −21.8938, −22.1763, −21.3329 and −13.3349 kJ∙mol−1, respectively. The D-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly(SULV) yielded binding free energy values of −14.5811, −15.9457, −13.6408, and −12.0959 kJ∙mol−1, respectively. Furthermore, hydrogen bonding analyses were used to investigate and elucidate the molecular interactions that govern chiral recognition in these molecular systems.more » « less
-
Abstract The first near IR fluorescent probe for the chemoselective and enantioselective recognition of arginine in aqueous solution is reported in this work. This probe, made of a 1,1’‐binaphthyl‐based chiral aldehyde unit and a rhodamine‐based near IR chromophore, in combination with La3+exhibits highly chemoselective as well as enantioselective fluorescent enhancement with arginine at λ=764 nm upon excitation at λ=690 nm. Little or no fluorescent response is observed toward the chirality miss‐matched arginine enantiomer or other common amino acids and their enantiomers. This probe also allows visual discrimination of the arginine enantiomers because of its fast and distinct color change upon interaction with the substrate.more » « less
-
The accurate detection, classification, and separation of chiral molecules are pivotal for advancing pharmaceutical and biomolecular innovations. Engineered chiral light presents a promising avenue to enhance the interaction between light and matter, offering a noninvasive, high-resolution, and cost-effective method for distinguishing enantiomers. Here, we present a nanostructured platform for surface-enhanced infrared absorption–induced vibrational circular dichroism (VCD) based on an achiral plasmonic system. This platform enables precise measurement, differentiation, and quantification of enantiomeric mixtures, including concentration and enantiomeric excess determination. Our experimental results exhibit a 13 orders of magnitude higher detection sensitivity for chiral enantiomers compared to conventional VCD spectroscopic techniques, accounting for respective path lengths and concentrations. The tunable spectral characteristics of this achiral plasmonic system facilitate the detection of a diverse range of chiral compounds. The platform’s simplicity, tunability, and exceptional sensitivity holds remarkable potential for enantiomer classification in drug design, pharmaceuticals, and biological applications.more » « less
-
The 2D Ising model is well-formulated to address problems in adsorption thermodynamics. It is particularly well-suited to describing the adsorption isotherms predicting the surface enantiomeric excess, ees, observed during competitive co-adsorption of enantiomers onto achiral surfaces. Herein, we make the direct one-to-one correspondence between the 2D Ising model Hamiltonian and the Hamiltonian used to describe competitive enantiomer adsorption on achiral surfaces. We then demonstrate that adsorption from racemic mixtures of enantiomers and adsorption of prochiral molecules are directly analogous to the Ising model with no applied magnetic field, i.e., the enantiomeric excess on chiral surfaces can be predicted using Onsager’s solution to the 2D Ising model. The implication is that enantiomeric purity on the surface can be achieved during equilibrium exposure of prochiral compounds or racemic mixtures of enantiomers to achiral surfaces.more » « less
An official website of the United States government

