skip to main content


This content will become publicly available on June 1, 2024

Title: Characterization of Micelle Formation by the Single Amino Acid-Based Surfactants Undecanoic L-Isoleucine and Undecanoic L-Norleucine in the Presence of Diamine Counterions with Varying Chain Lengths
The binding of linear diamine counterions with different methylene chain lengths to the amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counterions were all linear diamines with varying spacer chain lengths between the two amine functional groups. The sodium counterion was studied as well. Results showed that when the length of the counterion methylene chain was increased, the surfactants’ critical micelle concentrations (CMC) decreased. This decrease was attributed to diamines with longer methylene chains binding to multiple surfactant monomers below the CMC and thus acting as templating agents for the formation of micelles. The entropic hydrophobic effect and differences in diamine counterion charge also contributed to the size of the micelles and the surfactants’ CMCs in the solution. NMR diffusion measurements showed that the micelles formed by both surfactants were largest when 1,4-diaminobutane counterions were present in the solution. This amine also had the largest mole fraction of micelle-bound counterions. Finally, the und-NL micelles were larger than the und-IL micelles when 1,4-diaminobutane counterions were bound to the micelle surface. A model was proposed in which this surfactant formed non-spherical aggregates with both the surfactant molecules’ hydrocarbon chains and n-butyl amino acid side chains pointing toward the micelle core. The und-IL micelles, in contrast, were smaller and likely spherically shaped.  more » « less
Award ID(s):
1709394
NSF-PAR ID:
10451261
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Colloids and Interfaces
Volume:
7
Issue:
2
ISSN:
2504-5377
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fluorinated surfactants are used in a wide range of applications that involve aqueous solvents incorporating various additives. The presence of organic compounds such as urea is expected to affect the self-assembly of fluorinated surfactants, however, very little is known about this. We investigated the effect of urea on the micellization in water of the common fluorinated surfactant ammonium perfluorooctanoate (APFO), and on the structure and microenvironment of the micelles that APFO forms. Addition of urea to aqueous APFO solution decreased the critical micellization concentration (CMC) and increased the counterion dissociation. The observed increase in surface area per APFO headgroup and decrease in packing density at the micelle surface suggest the localization of urea at the micelle surface in a manner that reduces headgroup repulsions. Micropolarity data further support this picture. The results presented here indicate that significant differences exist between urea effects on fluorinated surfactant and on hydrocarbon surfactant micellization in aqueous solution. For example, the CMC of sodium dodecyl sulfate (SDS) increased with urea addition, while the increase in surface area per headgroup and packing density of SDS with urea addition are much lower than those observed for APFO. This study informs fluorinated surfactant fate and transport in the environment, and also applications involving aqueous media in which urea or similar additives are present. 
    more » « less
  2. Abstract In this study the chiral selectivity of l-undecyl-leucine (und-leu) for binapthyl derivatives was examined with the use of arginine and sodium counterions at pH’s ranging from 7 to 11. The objective of this project was to investigate whether a cationic amino acid, such as arginine would achieve enhanced chiral selectivity when utilized as the counterion in the place of sodium in micellar electrokinetic chromatography. The data indicate that und-leu has significantly improved chiral selectivity toward 1,1′-binaphthyl-2,2′-diyl hydrogenphosphate (BNP) enantiomers in the presence of arginine counterions in comparison to sodium and that, at least in the case of this study, the enantiomeric form of the arginine did not appear to play a role in the chiral selectivity. The maximum resolution (Rs) achieved for BNP when sodium was used as the counterion was ~0.6. However, when arginine was used as the counterion, the maximum resolution for BNP was ~4.1. This was an increase in resolution of ~ 7-fold. However, no significant difference was observed for the enantiomers of 1,1′-bi-2-naphthol. In order to learn more about why this might be the case, NMR studies were conducted to examine what role the counterion might play in enantiomeric recognition. 
    more » « less
  3. The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions. 
    more » « less
  4. We explore the consequences of micelle formation for diffusiophoresis of charged colloidal particles in ionic surfactant concentration gradients, using a quasi-chemical association model for surfactant self assembly. The electrophoretic contribution to diffusiophoresis is determined by re-arranging the Nernst–Planck equations, and the chemiphoretic contribution is estimated by making plausible approximations for the density profiles in the electrical double layer surrounding the particle. For sub-micellar solutions we find that a particle will typically be propelled down the concentration gradient, although electrophoresis and chemiphoresis are finely balanced and the effect is sensitive to the detailed parameter choices and simplifying assumptions in the model. Above the critical micelle concentration (CMC), diffusiophoresis becomes much weaker and may even reverse sign, due to the fact that added surfactant goes into building micelles and not augmenting the monomer or counterion concentrations. We present detailed calculations for sodium dodecyl sulfate (SDS), finding that the typical drift speed for a colloidal particle in a ∼100 μm length scale SDS gradient is ∼1 μm s −1 below the CMC, falling to ≲0.2 μm s −1 above the CMC. These predictions are broadly in agreement with recent experimental work. 
    more » « less
  5. Abstract Eight fluorescent surfactants were synthesized by attaching aliphatic chains of 6, 10, 12, or 16 carbons to the fluorescent dyes Rhodamine B and Eosin Y. The obtained critical micelle concentrations (CMC) demonstrate an increasing CMC with decreasing aliphatic chain length, which is a typical behavior for surfactants. Additionally, fluorescence quantum yield experiments show a decrease in quantum yield with increasing aliphatic chain length, suggesting that the tails can interact with the dye, influencing its excited state. Finally, applications for the fluorescent surfactants were demonstrated; as a cellular stain in Panc-1 cells and as a dispersion and imaging tool for carbon and boron nitride nanotubes. These surfactants could provide a useful tool for a wide array of potential applications, from textile dyes to fluorescence imaging. 
    more » « less