skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Charged Particle Tracking via Edge-Classifying Interaction Networks
Abstract Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of measurements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN architecture is substantially smaller than previously studied GNN tracking architectures; this is particularly promising as a reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore, the IN may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.  more » « less
Award ID(s):
1836650
PAR ID:
10354362
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Computing and Software for Big Science
Volume:
5
Issue:
1
ISSN:
2510-2036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning algorithm that has successfully been applied to this task by embedding tracker data as a graph—nodes represent hits, while edges represent possible track segments—and classifying the edges as true or fake track segments. However, their study in hardware- or software-based trigger applications has been limited due to their large computational cost. In this paper, we introduce an automated translation workflow, integrated into a broader tool called hls4ml , for converting GNNs into firmware for field-programmable gate arrays (FPGAs). We use this translation tool to implement GNNs for charged particle tracking, trained using the TrackML challenge dataset, on FPGAs with designs targeting different graph sizes, task complexites, and latency/throughput requirements. This work could enable the inclusion of charged particle tracking GNNs at the trigger level for HL-LHC experiments. 
    more » « less
  2. null (Ed.)
    Existing Graph Neural Network (GNN) methods that learn inductive unsupervised graph representations focus on learning node and edge representations by predicting observed edges in the graph. Although such approaches have shown advances in downstream node classification tasks, they are ineffective in jointly representing larger k-node sets, k > 2. We propose MHM-GNN, an inductive unsupervised graph representation approach that combines joint k-node representations with energy-based models (hypergraph Markov networks) and GNNs. To address the intractability of the loss that arises from this combination, we endow our optimization with a loss upper bound using a finite-sample unbiased Markov Chain Monte Carlo estimator. Our experiments show that the unsupervised MHM-GNN representations of MHM-GNN produce better unsupervised representations than existing approaches from the literature. 
    more » « less
  3. Functional reverse engineering of flattened Field Programmable Gate Array (FPGA) Look-Up Table (LUT) netlists to Register Transfer Level (RTL) representation is essential to understand, reconstruct and enhance the existing legacy designs. Recent advances in machine learning show promising results in solving EDA problems. In this paper, we propose a tool, RELUT-GNN that uses Graph Neural Networks (GNNs) to extract high-level functionality of data path elements from LUT-level netlists. For GNNs, the netlist structure is represented as a graph with FPGA leaf cells as nodes and the nets among them as edges. We extract features for each node and train the GNN to learn the structure of the netlist by aggregating their node features and their neighbors. The training dataset includes a comprehensive custom dataset consisting of various Operators, Shifters, Counters, FSMs, and their combinations of varying bit widths. The model is validated and tested on unseen real-world designs obtained from Opencores and ITC99. It is observed that RELUT-GNN achieved a combined accuracy of 97.12% for the classification of selected benchmarks from arithmetic and DSP cores and the ITC‘99 benchmarks. 
    more » « less
  4. null (Ed.)
    Web tracking and advertising (WTA) nowadays are ubiquitously performed on the web, continuously compromising users' privacy. Existing defense solutions, such as widely deployed blocking tools based on filter lists and alternative machine learning based solutions proposed in prior research, have limitations in terms of accuracy and effectiveness. In this work, we propose WtaGraph, a web tracking and advertising detection framework based on Graph Neural Networks (GNNs). We first construct an attributed homogenous multi-graph (AHMG) that represents HTTP network traffic, and formulate web tracking and advertising detection as a task of GNN-based edge representation learning and classification in AHMG. We then design four components in WtaGraph so that it can (1) collect HTTP network traffic, DOM, and JavaScript data, (2) construct AHMG and extract corresponding edge and node features, (3) build a GNN model for edge representation learning and WTA detection in the transductive learning setting, and (4) use a pre-trained GNN model for WTA detection in the inductive learning setting. We evaluate WtaGraph on a dataset collected from Alexa Top 10K websites, and show that WtaGraph can effectively detect WTA requests in both transductive and inductive learning settings. Manual verification results indicate that WtaGraph can detect new WTA requests that are missed by filter lists and recognize non-WTA requests that are mistakenly labeled by filter lists. Our ablation analysis, evasion evaluation, and real-time evaluation show that WtaGraph can have a competitive performance with flexible deployment options in practice. 
    more » « less
  5. In-time particle trajectory reconstruction in the Large Hadron Collider is challenging due to the high collision rate and numerous particle hits. Using GNN (Graph Neural Network) on FPGA has enabled superior accuracy with flexible trajectory classification. However, existing GNN architectures have inefficient resource usage and insufficient parallelism for edge classification. This paper introduces a resource-efficient GNN architecture on FPGAs for low latency particle tracking. The modular architecture facilitates design scalability to support large graphs. Leveraging the geometric properties of hit detectors further reduces graph complexity and resource usage. Our results on Xilinx UltraScale+ VU9P demonstrate 1625x and 1574x performance improvement over CPU and GPU respectively. 
    more » « less