Abstract The reconstruction of the trajectories of charged particles, or track reconstruction, is a key computational challenge for particle and nuclear physics experiments. While the tuning of track reconstruction algorithms can depend strongly on details of the detector geometry, the algorithms currently in use by experiments share many common features. At the same time, the intense environment of the High-Luminosity LHC accelerator and other future experiments is expected to put even greater computational stress on track reconstruction software, motivating the development of more performant algorithms. We present here A Common Tracking Software (ACTS) toolkit, which draws on the experience with track reconstruction algorithms in the ATLAS experiment and presents them in an experiment-independent and framework-independent toolkit. It provides a set of high-level track reconstruction tools which are agnostic to the details of the detection technologies and magnetic field configuration and tested for strict thread-safety to support multi-threaded event processing. We discuss the conceptual design and technical implementation of ACTS, selected applications and performance of ACTS, and the lessons learned.
more »
« less
Evolutionary Algorithms for Tracking Algorithm Parameter Optimization
The reconstruction of charged particle trajectories, known as tracking, is one of the most complex and CPU consuming parts of event processing in high energy particle physics experiments. The most widely used and best performing tracking algorithms require significant geometry-specific tuning of the algorithm parameters to achieve best results. In this paper, we demonstrate the usage of machine learning techniques, particularly evolutionary algorithms, to find high performing configurations for the first step of tracking, called track seeding. We use a track seeding algorithm from the software framework A Common Tracking Software (ACTS). ACTS aims to provide an experimentindependent and framework-independent tracking software designed for modern computing architectures. We show that our optimization algorithms find highly performing configurations in ACTS without hand-tuning. These techniques can be applied to other reconstruction tasks, improving performance and reducing the need for laborious hand-tuning of parameters.
more »
« less
- Award ID(s):
- 1836650
- PAR ID:
- 10354370
- Editor(s):
- Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A.
- Date Published:
- Journal Name:
- EPJ Web of Conferences
- Volume:
- 251
- ISSN:
- 2100-014X
- Page Range / eLocation ID:
- 03071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The major challenge posed by the high instantaneous luminosity in the High Luminosity LHC (HL-LHC) motivates efficient and fast reconstruction of charged particle tracks in a high pile-up environment. While there have been efforts to use modern techniques like vectorization to improve the existing classic Kalman Filter based reconstruction algorithms, we take a fundamentally different approach by doing a bottom-up reconstruction of tracks. Our algorithm, called Line Segment Tracking, constructs small track stubs from adjoining detector regions, and then successively links these track stubs that are consistent with typical track trajectories. Since the production of these track stubs is localized, they can be made in parallel, which lends way into using architectures like GPUs and multi-CPUs to take advantage of the parallelism. We establish an implementation of our algorithm in the context of the CMS Phase-2 Tracker which runs on NVIDIA Tesla V100 GPUs, and measure the physics performance and the computing time.more » « less
-
Abstract Computing centres, including those used to process High-Energy Physics data and simulations, are increasingly providing significant fractions of their computing resources through hardware architectures other than x86 CPUs, with GPUs being a common alternative. GPUs can provide excellent computational performance at a good price point for tasks that can be suitably parallelized. Charged particle (track) reconstruction is a computationally expensive component of HEP data reconstruction, and thus needs to use available resources in an efficient way. In this paper, an implementation of Kalman filter-based track fitting using CUDA and running on GPUs is presented. This utilizes the ACTS (A Common Tracking Software) toolkit; an open source and experiment-independent toolkit for track reconstruction. The implementation details and parallelization approach are described, along with the specific challenges for such an implementation. Detailed performance benchmarking results are discussed, which show encouraging performance gains over a CPU-based implementation for representative configurations. Finally, a perspective on the challenges and future directions for these studies is outlined. These include more complex and realistic scenarios which can be studied, and anticipated developments to software frameworks and standards which may open up possibilities for greater flexibility and improved performance.more » « less
-
Abstract The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) will produce particle collisions with up to 200 simultaneous proton-proton interactions. These unprecedented conditions will create a combinatorial complexity for charged-particle track reconstruction that demands a computational cost that is expected to surpass the projected computing budget using conventional CPUs. Motivated by this and taking into account the prevalence of heterogeneous computing in cutting-edge High Performance Computing centers, we propose an efficient, fast and highly parallelizable bottom-up approach to track reconstruction for the HL-LHC, along with an associated implementation on GPUs, in the context of the Phase 2 CMS outer tracker. Our algorithm, called Segment Linking (or Line Segment Tracking), takes advantage of localized track stub creation, combining individual stubs to progressively form higher level objects that are subject to kinematical and geometrical requirements compatible with genuine physics tracks. The local nature of the algorithm makes it ideal for parallelization under the Single Instruction, Multiple Data paradigm, as hundreds of objects can be built simultaneously. The computing and physics performance of the algorithm has been tested on an NVIDIA Tesla V100 GPU, already yielding efficiency and timing measurements that are on par with the latest, multi-CPU versions of existing CMS tracking algorithms.more » « less
-
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is finding and fitting particle tracks during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filterbased methods for highly parallel, many-core SIMD and SIMT architectures that are now prevalent in high-performance hardware. Previously we observed significant parallel speedups, with physics performance comparable to CMS standard tracking, on Intel Xeon, Intel Xeon Phi, and (to a limited extent) NVIDIA GPUs. While early tests were based on artificial events occurring inside an idealized barrel detector, we showed subsequently that our mkFit software builds tracks successfully from complex simulated events (including detector pileup) occurring inside a geometrically accurate representation of the CMS-2017 tracker. Here, we report on advances in both the computational and physics performance of mkFit, as well as progress toward integration with CMS production software. Recently we have improved the overall efficiency of the algorithm by preserving short track candidates at a relatively early stage rather than attempting to extend them over many layers. Moreover, mkFit formerly produced an excess of duplicate tracks; these are now explicitly removed in an additional processing step. We demonstrate that with these enhancements, mkFit becomes a suitable choice for the first iteration of CMS tracking, and eventually for later iterations as well. We plan to test this capability in the CMS High Level Trigger during Run 3 of the LHC, with an ultimate goal of using it in both the CMS HLT and offline reconstruction for the HL-LHC CMS tracker.more » « less