skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pervasive Pose Estimation for Fall Detection
Falls are the second leading cause of accidental or unintentional injuries/deaths worldwide. Accurate pose estimation using commodity mobile devices will help early detection and injury assessment of falls, which are essential for the first aid of elderly falls. By following the definition of fall, we propose a P ervasive P ose Est imation scheme for fall detection ( P \( ^2 \) Est ), which measures changes in tilt angle and height of the human body. For the tilt measurement, P \( ^2 \) Est leverages the pointing of the mobile device, e.g., the smartphone, when unlocking to associate the Device coordinate system with the World coordinate system. For the height measurement, P \( ^2 \) Est exploits the fact that the person’s height remains unchanged while walking to calibrate the pressure difference between the device and the floor. We have prototyped and tested P \( ^2 \) Est in various situations and environments. Our extensive experimental results have demonstrated that P \( ^2 \) Est can track the body orientation irrespective of which pocket the phone is placed in. More importantly, it enables the phone’s barometer to detect falls in various environments with decimeter-level accuracy.  more » « less
Award ID(s):
1646130
PAR ID:
10390078
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Computing for Healthcare
Volume:
3
Issue:
3
ISSN:
2691-1957
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications. 
    more » « less
  2. Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has an imbalanced nature. Moreover, we designed a deep learning model that combines a convolution-based feature extractor and deep neural network blocks, the LSTM block, and the transformer encoder block, followed by a position-wise feedforward layer. We found that combining the input sequence with the convolution-learned features of different kernels tends to increase the performance of the fall-detection model. Last, we analyzed that the sensor signals collected by both accelerometer and gyroscope sensors can be leveraged to develop an effective classifier that can accurately detect falls, especially differentiating falls from near-falls. Furthermore, we also used data from sixteen different body parts and compared them to determine the better sensor position for fall-detection methods. We found that the shank is the optimal position for placing our sensors, with an F1 score of 0.97, and this could help other researchers collect high-quality fall datasets. 
    more » « less
  3. The fall detection system is of critical importance in protecting elders through promptly discovering fall accidents to provide immediate medical assistance, potentially saving elders' lives. This paper aims to develop a novel and lightweight fall detection system by relying solely on a home audio device via inaudible acoustic sensing, to recognize fall occurrences for wide home deployment. In particular, we program the audio device to let its speaker emit 20kHz continuous wave, while utilizing a microphone to record reflected signals for capturing the Doppler shift caused by the fall. Considering interferences from different factors, we first develop a set of solutions for their removal to get clean spectrograms and then apply the power burst curve to locate the time points at which human motions happen. A set of effective features is then extracted from the spectrograms for representing the fall patterns, distinguishable from normal activities. We further apply the Singular Value Decomposition (SVD) and K-mean algorithms to reduce the data feature dimensions and to cluster the data, respectively, before input them to a Hidden Markov Model for training and classification. In the end, our system is implemented and deployed in various environments for evaluation. The experimental results demonstrate that our system can achieve superior performance for detecting fall accidents and is robust to environment changes, i.e., transferable to other environments after training in one environment. 
    more » « less
  4. Falls are the second leading cause of unintentional injury deaths worldwide. While numerous wearable fall detection devices incorporating AI models have been developed, none of them are used successfully in a fall detection application running on commodity-based smartwatches in real time. The system misses some falls, and generates an annoying amount of False Positives for practical use. We have investigated and experimented with an LSTM model for fall detection on a smartwatch. Even though the LSTM model has high accuracy during offline testing, the good performance of offline LSTM models cannot be translated to the equivalence of real-time performance. Transformers, on the other hand, can learn long-sequence data and patterns intrinsic to the data due to their self-attention mechanism. This paper compares three variants of LSTM and two variants of Transformer models for learning fall patterns. We trained all models using fall and activity data from three datasets, and the real-time testing of the model was performed using the SmartFall App. Our findings showed that in the offline training, the CNN-LSTM model was better than the Transformer model for all the datasets. However, the Transformer is a preferable choice for deployment in real-time fall detection applications. 
    more » « less
  5. The majority of current smart health applications are deployed on a smartphone paired with a smartwatch. The phone is used as the computation platform or the gateway for connecting to the cloud while the watch is used mainly as the data sensing device. In the case of fall detection applications for older adults, this kind of setup is not very practical since it requires users to always keep their phones in proximity while doing the daily chores. When a person falls, in a moment of panic, it might be difficult to locate the phone in order to interact with the Fall Detection App for the purpose of indicating whether they are fine or need help. This paper demonstrates the feasibility of running a real-time personalized deep-learning-based fall detection system on a smartwatch device using a collaborative edge-cloud framework. In particular, we present the software architecture we used for the collaborative framework, demonstrate how we automate the fall detection pipeline, design an appropriate UI on the small screen of the watch, and implement strategies for the continuous data collection and automation of the personalization process with the limited computational and storage resources of a smartwatch. We also present the usability of such a system with nine real-world older adult participants. 
    more » « less