skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Light Boosting-based ML Model for Detecting Deceptive Jamming Attacks on UAVs
Advances made in Unmanned Aircraft Vehicles (UAVs) have increased rapidly in the last decade resulting in new applications in both civil and military spheres. However, with the growth in the usage of these systems, various cybersecurity challenges arose unveiling the vulnerabilities of UAV wireless networks. Among the attacks that threaten the network's availability and reduce their performance are jamming attacks. Several approaches have been proposed to address this problem; however, most of them are not suitable for UAVs due to their reduced size, weight, and power constraints. In this paper, we propose a lightweight machine learning technique, LightGBM, to detect deceptive jamming attacks on UAV networks. The performance of this model is compared to that of three boosting and bagging-based machine learning models namely, XGBoost, Gradient Boost, and Random Forest. The results show that, although the LightGBM model has slightly lower accuracy (98.4%) than Gradient Boost (99%) and Random Forest (98.87%), it is 21 times faster and occupies two times less memory during the prediction than Gradient Boost and Random Forest.  more » « less
Award ID(s):
2006674
PAR ID:
10354441
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Annual Computing and Communication Workshop and Conference (CCWC)
Page Range / eLocation ID:
0328 to 0333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications. 
    more » « less
  2. With the growing adoption of unmanned aerial vehicles (UAVs) across various domains, the security of their operations is paramount. UAVs, heavily dependent on GPS navigation, are at risk of jamming and spoofing cyberattacks, which can severely jeopardize their performance, safety, and mission integrity. Intrusion detection systems (IDSs) are typically employed as defense mechanisms, often leveraging traditional machine learning techniques. However, these IDSs are susceptible to adversarial attacks that exploit machine learning models by introducing input perturbations. In this work, we propose a novel IDS for UAVs to enhance resilience against such attacks using generative adversarial networks (GAN). We also comprehensively study several evasion-based adversarial attacks and utilize them to compare the performance of the proposed IDS with existing ones. The resilience is achieved by generating synthetic data based on the identified weak points in the IDS and incorporating these adversarial samples in the training process to regularize the learning. The evaluation results demonstrate that the proposed IDS is significantly robust against adversarial machine learning based attacks compared to the state-of-the-art IDSs while maintaining a low false positive rate. 
    more » « less
  3. NA (Ed.)
    Unmanned aerial vehicles (UAVs) are prone to several cyber-attacks, including global positioning system (GPS) spoofing. The use of machine learning and deep learning are becoming increasingly common for UAV GPS spoofing attack detection; however, these approaches have some limitations, such as a high rate of false alarm and misdetection. We propose using capsule networks to detect and classify UAV-focused GPS spoofing attacks. This paper compares simple capsule networks, efficient capsule networks, dual attention capsule networks, and convolutional neural network in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, prediction time, training time per sample, and memory size. The results indicate that the Efficient-capsule network outperforms the other models, as demonstrated by an accuracy of 99.1%, a probability of detection of 99.9%, a probability of misdetection of 0.1%, a probability of false alarm of 0.37%, a prediction time of 0.5 seconds, a training time per sample of 0.2 seconds, and a memory size of 123 mebibytes for binary classification. 
    more » « less
  4. With the increasing use of Unmanned Aerial Vehicles in military and civilian applications, the security of this technology has become one of the critical concerns. UAVs’ positioning and navigation activities are highly dependent on Global Positioning Systems as they provide accurate locations for these vehicles. However, due to the civilian GPS signals being open and unencrypted, malicious users can target them in multiple ways, including by launching Global Positioning System spoofing attacks. To address this security issue, numerous techniques have been proposed to detect and classify these attacks, including supervised machine learning techniques. However, no studies have focused on unsupervised models to detect these attacks. In this paper, we compare the performance of several supervised models with that of unsupervised models in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, processing time, training time, prediction time, and memory size. The supervised models are Gaussian Naïve Bayes, Classification and Regression Decision Tree, Logistic Regression, Random Forest, Linear-Support Vector Machine, and Artificial Neural Network. The unsupervised models are Principal Component Analysis, K-means clustering, and Autoencoder. The results show that the Classification and Regression Decision Tree model outperforms the other supervised and unsupervised models in detecting and classifying GPS spoofing attacks. 
    more » « less
  5. Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery, emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective. Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for the UAV. 
    more » « less