skip to main content


Title: A Light Boosting-based ML Model for Detecting Deceptive Jamming Attacks on UAVs
Advances made in Unmanned Aircraft Vehicles (UAVs) have increased rapidly in the last decade resulting in new applications in both civil and military spheres. However, with the growth in the usage of these systems, various cybersecurity challenges arose unveiling the vulnerabilities of UAV wireless networks. Among the attacks that threaten the network's availability and reduce their performance are jamming attacks. Several approaches have been proposed to address this problem; however, most of them are not suitable for UAVs due to their reduced size, weight, and power constraints. In this paper, we propose a lightweight machine learning technique, LightGBM, to detect deceptive jamming attacks on UAV networks. The performance of this model is compared to that of three boosting and bagging-based machine learning models namely, XGBoost, Gradient Boost, and Random Forest. The results show that, although the LightGBM model has slightly lower accuracy (98.4%) than Gradient Boost (99%) and Random Forest (98.87%), it is 21 times faster and occupies two times less memory during the prediction than Gradient Boost and Random Forest.  more » « less
Award ID(s):
2006674
NSF-PAR ID:
10354441
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Annual Computing and Communication Workshop and Conference (CCWC)
Page Range / eLocation ID:
0328 to 0333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications. 
    more » « less
  2. With the growing adoption of unmanned aerial vehicles (UAVs) across various domains, the security of their operations is paramount. UAVs, heavily dependent on GPS navigation, are at risk of jamming and spoofing cyberattacks, which can severely jeopardize their performance, safety, and mission integrity. Intrusion detection systems (IDSs) are typically employed as defense mechanisms, often leveraging traditional machine learning techniques. However, these IDSs are susceptible to adversarial attacks that exploit machine learning models by introducing input perturbations. In this work, we propose a novel IDS for UAVs to enhance resilience against such attacks using generative adversarial networks (GAN). We also comprehensively study several evasion-based adversarial attacks and utilize them to compare the performance of the proposed IDS with existing ones. The resilience is achieved by generating synthetic data based on the identified weak points in the IDS and incorporating these adversarial samples in the training process to regularize the learning. The evaluation results demonstrate that the proposed IDS is significantly robust against adversarial machine learning based attacks compared to the state-of-the-art IDSs while maintaining a low false positive rate. 
    more » « less
  3. With the increasing use of Unmanned Aerial Vehicles in military and civilian applications, the security of this technology has become one of the critical concerns. UAVs’ positioning and navigation activities are highly dependent on Global Positioning Systems as they provide accurate locations for these vehicles. However, due to the civilian GPS signals being open and unencrypted, malicious users can target them in multiple ways, including by launching Global Positioning System spoofing attacks. To address this security issue, numerous techniques have been proposed to detect and classify these attacks, including supervised machine learning techniques. However, no studies have focused on unsupervised models to detect these attacks. In this paper, we compare the performance of several supervised models with that of unsupervised models in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, processing time, training time, prediction time, and memory size. The supervised models are Gaussian Naïve Bayes, Classification and Regression Decision Tree, Logistic Regression, Random Forest, Linear-Support Vector Machine, and Artificial Neural Network. The unsupervised models are Principal Component Analysis, K-means clustering, and Autoencoder. The results show that the Classification and Regression Decision Tree model outperforms the other supervised and unsupervised models in detecting and classifying GPS spoofing attacks. 
    more » « less
  4. Abstract

    Advances in both hardware and software are enabling rapid proliferation of in situ plankton imaging methods, requiring more effective machine learning approaches to image classification. Deep Learning methods, such as convolutional neural networks (CNNs), show marked improvement over traditional feature‐based supervised machine learning algorithms, but require careful optimization of hyperparameters and adequate training sets. Here, we document some best practices in applying CNNs to zooplankton and marine snow images and note where our results differ from contemporary Deep Learning findings in other domains. We boost the performance of CNN classifiers by incorporating metadata of different types and illustrate how to assimilate metadata beyond simple concatenation. We utilize both geotemporal (e.g., sample depth, location, time of day) and hydrographic (e.g., temperature, salinity, chlorophylla) metadata and show that either type by itself, or both combined, can substantially reduce error rates. Incorporation of context metadata also boosts performance of the feature‐based classifiers we evaluated: Random Forest, Extremely Randomized Trees, Gradient Boosted Classifier, Support Vector Machines, and Multilayer Perceptron. For our assessments, we use an original data set of 350,000 in situ images (roughly 50% marine snow and 50% non‐snow sorted into 26 categories) from a novel in situZooglider. We document asymptotically increasing performance with more computationally intensive techniques, such as substantially deeper networks and artificially augmented data sets. Our best model achieves 92.3% accuracy with our 27‐class data set. We provide guidance for further refinements that are likely to provide additional gains in classifier accuracy.

     
    more » « less
  5. The food production system is vulnerable to diseases more than ever, and the threat is increasing in an era of climate change that creates more favorable conditions for emerging diseases. Fortunately, scientists and engineers are making great strides to introduce farming innovations to tackle the challenge. Unmanned aerial vehicle (UAV) remote sensing is among the innovations and thus is widely applied for crop health monitoring and phenotyping. This study demonstrated the versatility of aerial remote sensing in diagnosing yellow rust infection in spring wheats in a timely manner and determining an intervenable period to prevent yield loss. A small UAV equipped with an aerial multispectral sensor periodically flew over, and collected remotely sensed images of, an experimental field in Chacabuco (−34.64; −60.46), Argentina during the 2021 growing season. Post-collection images at the plot level were engaged in a thorough feature-engineering process by handcrafting disease-centric vegetation indices (VIs) from the spectral dimension, and grey-level co-occurrence matrix (GLCM) texture features from the spatial dimension. A machine learning pipeline entailing a support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) was constructed to identify locations of healthy, mild infection, and severe infection plots in the field. A custom 3-dimensional convolutional neural network (3D-CNN) relying on the feature learning mechanism was an alternative prediction method. The study found red-edge (690–740 nm) and near infrared (NIR) (740–1000 nm) as vital spectral bands for distinguishing healthy and severely infected wheats. The carotenoid reflectance index 2 (CRI2), soil-adjusted vegetation index 2 (SAVI2), and GLCM contrast texture at an optimal distance d = 5 and angular direction θ = 135° were the most correlated features. The 3D-CNN-based wheat disease monitoring performed at 60% detection accuracy as early as 40 days after sowing (DAS), when crops were tillering, increasing to 71% and 77% at the later booting and flowering stages (100–120 DAS), and reaching a peak accuracy of 79% for the spectral-spatio-temporal fused data model. The success of early disease diagnosis from low-cost multispectral UAVs not only shed new light on crop breeding and pathology but also aided crop growers by informing them of a prevention period that could potentially preserve 3–7% of the yield at the confidence level of 95%. 
    more » « less