Abstract Endoluminal devices are indispensable in medical procedures in the natural lumina of the body, such as the circulatory system and gastrointestinal tract. In current clinical practice, there is a need for increased control and capabilities of endoluminal devices with less discomfort and risk to the patient. This paper describes the detailed modeling and experimental validation of a magneto-electroactive endoluminal soft (MEESo) robot concept that combines magnetic and electroactive polymer (EAP) actuation to improve the utility of the device. The proposed capsule-like device comprises two permanent magnets with alternating polarity connected by a soft, low-power ionic polymer-metal composite (IPMC) EAP body. A detailed model of the MEESo robot is developed to explore quantitatively the effects of dual magneto-electroactive actuation on the robot’s performance. It is shown that the robot’s gait is enhanced, during the magnetically-driven gait cycle, with IPMC body deformation. The concept is further validated by creating a physical prototype MEESo robot. Experimental results show that the robot’s performance increases up to 68% compared to no IPMC body actuation. These results strongly suggest that integrating EAP into the magnetically-driven system extends the efficacy for traversing tract environments.
more »
« less
Modeling and Analysis of a Soft Endoluminal Inchworm Robot Propelled by a Rotating Magnetic Dipole Field
In clinical practice, therapeutic and diagnostic endoluminal procedures of the human body often use a scope, catheter, or passive pill-shaped camera. Unfortunately, such devices used in the circulatory system and gastrointestinal tract are often uncomfortable, invasive, and require the patient to be sedated. With current technology, regions of the body are often inaccessible to the clinician. Herein, a magnetically actuated soft endoluminal inchworm robot that may extend clinicians’ ability to reach further into the human body and practice new procedures is described, modeled, and analyzed. A detailed locomotion model is pro- posed that takes into account the elastic deformation of the robot and its interactions with the environment. The model is validated with in vitro and ex vivo (pig intestine) physical experiments and is shown to capture the robot’s gait characteristics through a lumen. Utilizing dimensional analysis, the effects of the mechanical properties and design variables on the robot’s motion are investigated further to advance the understanding of this endoluminal robot concept.
more »
« less
- Award ID(s):
- 1830958
- PAR ID:
- 10354516
- Date Published:
- Journal Name:
- Journal of mechanisms and robotics
- Volume:
- 14
- ISSN:
- 1942-4310
- Page Range / eLocation ID:
- 051002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As over 11,000 people turn 65 each day in the U.S., our country, like many others, is facing growing challenges in caring for elderly persons, further exacerbated by a major shortfall of care workers. To address this, we introduce an eldercare robot (E-BAR) capable of lifting a human body, assisting with postural changes/ambulation, and catching a user during a fall, all without the use of any wearable device or harness. Our robot is the first to integrate these 3 tasks, and is capable of lifting the full weight of a human outside of the robot’s base of support (across gaps and obstacles). In developing E-BAR, we interviewed nurses and care professionals and conducted user experience tests with elderly persons. Based on their functional requirements, the design parameters were optimized using a computational model and trade-off analysis. We developed a novel 18-bar linkage to lift a person from a floor to a standing position along a natural trajectory, while providing maximal mechanical advantage at key points. An omnidirectional, nonholonomic drive base, in which the wheels could be oriented to passively maximize floor grip, enabled the robot to resist lateral forces without active compensation. With a minimum width of 38 cm, the robot’s small footprint allowed it to navigate the typical home environment. Four airbags were used to catch and stabilize a user during a fall in ≤ 250 ms. We demonstrate E-BAR’s utility in multiple typical home scenarios, including getting into/out of a bathtub, bending to reach for objects, sit-to-stand transitions, and ambulation.more » « less
-
null (Ed.)Robots are increasingly being introduced into domains where they assist or collaborate with human counterparts. There is a growing body of literature on how robots might serve as collaborators in creative activities, but little is known about the factors that shape human perceptions of robots as creative collaborators. This paper investigates the effects of a robot’s social behaviors on people’s creative thinking and their perceptions of the robot. We developed an interactive system to facilitate collaboration between a human and a robot in a creative activity. We conducted a user study (n = 12), in which the robot and adult participants took turns to create compositions using tangram pieces projected on a shared workspace. We observed four human behavioral traits related to creativity in the interaction: accepting robot inputs as inspiration, delegating the creative lead to the robot, communicating creative intents, and being playful in the creation. Our findings suggest designs for co-creation in social robots that consider the adversarial effect of giving the robot too much control in creation, as well as the role playfulness plays in the creative process.more » « less
-
Developing whole-body tactile skins for robots remains a challenging task, as existing solutions often prioritize modular, one-size-fits-all designs, which, while versatile, fail to account for the robot’s specific shape and the unique demands of its operational context. In this work, we introduce GenTact Toolbox, a computational pipeline for creating versatile wholebody tactile skins tailored to both robot shape and application domain. Our method includes procedural mesh generation for conforming to a robot’s topology, task-driven simulation to refine sensor distribution, and multi-material 3D printing for shape-agnostic fabrication. We validate our approach by creating and deploying six capacitive sensing skins on a Franka Research 3 robot arm in a human-robot interaction scenario. This work represents a shift from “one-size-fits-all” tactile sensors toward context-driven, highly adaptable designs that can be customized for a wide range of robotic systems and applications. The project website is available at https://hiro-group.ronc.one/gentacttoolboxmore » « less
-
Teleoperation—i.e., controlling a robot with human motion—proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot’s arms.more » « less
An official website of the United States government

