skip to main content

This content will become publicly available on October 1, 2023

Title: Modeling and Analysis of a Soft Endoluminal Inchworm Robot Propelled by a Rotating Magnetic Dipole Field
In clinical practice, therapeutic and diagnostic endoluminal procedures of the human body often use a scope, catheter, or passive pill-shaped camera. Unfortunately, such devices used in the circulatory system and gastrointestinal tract are often uncomfortable, invasive, and require the patient to be sedated. With current technology, regions of the body are often inaccessible to the clinician. Herein, a magnetically actuated soft endoluminal inchworm robot that may extend clinicians’ ability to reach further into the human body and practice new procedures is described, modeled, and analyzed. A detailed locomotion model is pro- posed that takes into account the elastic deformation of the robot and its interactions with the environment. The model is validated with in vitro and ex vivo (pig intestine) physical experiments and is shown to capture the robot’s gait characteristics through a lumen. Utilizing dimensional analysis, the effects of the mechanical properties and design variables on the robot’s motion are investigated further to advance the understanding of this endoluminal robot concept.
Authors:
Award ID(s):
1830958
Publication Date:
NSF-PAR ID:
10354516
Journal Name:
Journal of mechanisms and robotics
Volume:
14
Page Range or eLocation-ID:
051002
ISSN:
1942-4310
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this article is to enable robots to perform robust task execution following human instructions in partially observable environments. A robot’s ability to interpret and execute commands is fundamentally tied to its semantic world knowledge. Commonly, robots use exteroceptive sensors, such as cameras or LiDAR, to detect entities in the workspace and infer their visual properties and spatial relationships. However, semantic world properties are often visually imperceptible. We posit the use of non-exteroceptive modalities including physical proprioception, factual descriptions, and domain knowledge as mechanisms for inferring semantic properties of objects. We introduce a probabilistic model that fuses linguistic knowledge with visual and haptic observations into a cumulative belief over latent world attributes to infer the meaning of instructions and execute the instructed tasks in a manner robust to erroneous, noisy, or contradictory evidence. In addition, we provide a method that allows the robot to communicate knowledge dissonance back to the human as a means of correcting errors in the operator’s world model. Finally, we propose an efficient framework that anticipates possible linguistic interactions and infers the associated groundings for the current world state, thereby bootstrapping both language understanding and generation. We present experiments on manipulators for tasks thatmore »require inference over partially observed semantic properties, and evaluate our framework’s ability to exploit expressed information and knowledge bases to facilitate convergence, and generate statements to correct declared facts that were observed to be inconsistent with the robot’s estimate of object properties.« less
  2. Teleoperation—i.e., controlling a robot with human motion—proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot’s arms.
  3. Teleoperation—i.e., controlling a robot with human motion—proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot’s arms.
  4. Robots are increasingly being introduced into domains where they assist or collaborate with human counterparts. There is a growing body of literature on how robots might serve as collaborators in creative activities, but little is known about the factors that shape human perceptions of robots as creative collaborators. This paper investigates the effects of a robot’s social behaviors on people’s creative thinking and their perceptions of the robot. We developed an interactive system to facilitate collaboration between a human and a robot in a creative activity. We conducted a user study (n = 12), in which the robot and adult participants took turns to create compositions using tangram pieces projected on a shared workspace. We observed four human behavioral traits related to creativity in the interaction: accepting robot inputs as inspiration, delegating the creative lead to the robot, communicating creative intents, and being playful in the creation. Our findings suggest designs for co-creation in social robots that consider the adversarial effect of giving the robot too much control in creation, as well as the role playfulness plays in the creative process.
  5. Robots and humans closely working together within dynamic environments must be able to continuously look ahead and identify potential collisions within their ever-changing environment. To enable the robot to act upon such situational awareness, its controller requires an iterative collision detection capability that will allow for computationally efficient Proactive Adaptive Collaboration Intelligence (PACI) to ensure safe interactions. In this paper, an algorithm is developed to evaluate a robot’s trajectory, evaluate the dynamic environment that the robot operates in, and predict collisions between the robot and dynamic obstacles in its environment. This algorithm takes as input the joint motion data of predefined robot execution plans and constructs a sweep of the robot’s instantaneous poses throughout time. The sweep models the trajectory as a point cloud containing all locations occupied by the robot and the time at which they will be occupied. To reduce the computational burden, Coons patches are leveraged to approximate the robot’s instantaneous poses. In parallel, the algorithm creates a similar sweep to model any human(s) and other obstacles being tracked in the operating environment. Overlaying temporal mapping of the sweeps reveals anticipated collisions that will occur if the robot-human do not proactively modify their motion. The algorithm ismore »designed to feed into a segmentation and switching logic framework and provide real-time proactive-n-reactive behavior for different levels of human-robot interactions, while maintaining safety and production efficiency. To evaluate the predictive collision detection approach, multiple test cases are presented to quantify the computational speed and accuracy in predicting collisions.« less