skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tantalum, easy as Pi: understanding differences in metal–imido bonding towards improving Ta/Nb separations
The separation and purification of niobium and tantalum, which co-occur in natural sources, is difficult due to their similar physical and chemical properties. The current industrial method for separating Ta/Nb mixtures uses an energy-intensive process with caustic and toxic conditions. It is of interest to develop alternative, fundamental methodologies for the purification of these technologically important metals that improve upon their environmental impact. Herein, we introduce new Ta/Nb imido compounds: M( t BuN)(TriNOx) (1-M) bound by the TriNOx 3− ligand and demonstrate a fundamental, proof-of-concept Ta/Nb separation based on differences in the imido reactivities. Despite the nearly identical structures of 1-M, density functional theory (DFT)-computed electronic structures of 1-M indicate enhanced basic character of the imido group in 1-Ta as compared to 1-Nb. Accordingly, the rate of CO 2 insertion into the MN imido bond of 1-Ta to form a carbamate complex (2-Ta) was selective compared to the analogous, unobserved reaction with 1-Nb. Differences in solubility between the imido and carbamate complexes allowed for separation of the carbamate complex, and led to an efficient Ta/Nb separation ( S Ta/Nb = 404 ± 150) dependent on the kinetic differences in nucleophilicities between the imido moieties in 1-Ta and 1-Nb.  more » « less
Award ID(s):
1925708
PAR ID:
10354571
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
13
Issue:
23
ISSN:
2041-6520
Page Range / eLocation ID:
6796 to 6805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The bis(imido) complexes (BDI)Nb(N t Bu) 2 and (BDI)Nb(N t Bu)(NAr) (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate; Ar = 2,6-diisopropylphenyl) were shown to engage in 1,2-addition and [2 + 2] cycloaddition reactions with a wide variety of substrates. Reaction of the bis(imido) complexes with dihydrogen, silanes, and boranes yielded hydrido-amido-imido complexes via 1,2-addition across Nb-imido π-bonds; some of these complexes were shown to further react via insertion of carbon dioxide to give formate-amido-imido products. Similarly, reaction of (BDI)Nb(N t Bu) 2 with tert -butylacetylene yielded an acetylide-amido-imido complex. In contrast to these results, many related mono(imido) Nb BDI complexes do not exhibit 1,2-addition reactivity, suggesting that π-loading plays an important role in activating the Nb–N π-bonds toward addition. The same bis(imido) complexes were also shown to engage in [2 + 2] cycloaddition reactions with oxygen- and sulfur-containing heteroallenes to give carbamate- and thiocarbamate-imido complexes: some of these complexes readily dimerized to give bis-μ-sulfido, bis-μ-iminodicarboxylate, and bis-μ-carbonate complexes. The mononuclear carbamate imido complex (BDI)Nb(NAr)(N( t Bu)CO 2 ) ( 12 ) could be induced to eject tert -butylisocyanate to generate a four-coordinate terminal oxo imido intermediate, which could be trapped as the five-coordinate pyridine or DMAP adduct. The DMAP adducted oxo imido complex (BDI)NbO(NAr)(DMAP) ( 16 ) was shown to engage in 1,2-addition of silanes across the Nb-oxo π-bond; this represents a new reaction pathway in group 5 chemistry. 
    more » « less
  2. null (Ed.)
    The reactivity of alkali metal capped Ce( iv ) imido compounds [M(DME) 2 ][CeNAr F (TriNOx)] ( 1-M with M = K, Rb, Cs and Ar F = 3,5-bis(trifluoromethyl)phenyl) with CO 2 and organic isocyanates has been evaluated. 1-Cs reacted with CO 2 to yield an organocarbamate complex. Reaction of 1-K and 1-Rb with organic isocyanates yielded organoureate Ce( iv ) complexes. 
    more » « less
  3. Abstract Two new high-entropy ceramics (HECs) in the weberite and fergusonite structures, along with the unexpected formation of ordered pyrochlore phases with ultrahigh-entropy compositions and an abrupt pyrochlore-weberite transition, are discovered in a 21-component oxide system. While the Gibbs phase rule allows 21 equilibrium phases, 9 out of the 13 compositions examined possess single HEC phases (with ultrahigh ideal configurational entropies: ∼2.7 k B per cation or higher on one sublattice in most cases). Notably, (15RE 1/15 )(Nb 1/2 Ta 1/2 )O 4 possess a single monoclinic fergusonite (C2/ c ) phase, and (15RE 1/15 ) 3 (Nb 1/2 Ta 1/2 ) 1 O 7 form a single orthorhombic (C222 1 ) weberite phase, where 15RE 1/15 represents Sc 1/15 Y 1/15 La 1/15 Pr 1/15 Nd 1/15 Sm 1/15 Eu 1/15 Gd 1/15 Tb 1/15 Dy 1/15 Ho 1/15 Er 1/15 Tm 1/15 Yb 1/15 Lu 1/15 . Moreover, a series of eight (15RE 1/15 ) 2+ x (Ti 1/4 Zr 1/4 Ce 1/4 H 1/4 ) 2−2 x (Nb 1/2 Ta 1/2 ) x O 7 specimens all exhibit single phases, where a pyrochlore-weberite transition occurs within 0.75 < x < 0.8125. This cubic-to-orthorhombic transition does not change the temperature-dependent thermal conductivity appreciably, as the amorphous limit may have already been achieved in the ultrahigh-entropy 21-component oxides. These discoveries expand the diversity and complexity of HECs, towards many-component compositionally complex ceramics (CCCs) and ultrahigh-entropy ceramics. 
    more » « less
  4. null (Ed.)
    The surfaces of rocky planets are mostly covered by basaltic crust, but Earth is unique in that it also has extensive regions of felsic crust, manifested in the form of continents. Exactly how felsic crust forms when basaltic magmas are the dominant products of melting the mantles of rocky planets is unclear. A fundamental part of the debate is centered on the low Nb/Ta of Earth’s continental crust (11–13) compared to basalts (15–16). Here, we show that during arc magma differentiation, the extent of Nb/Ta fractionation varies with crustal thickness with the lowest Nb/Ta seen in continental arc magmas. Deep arc cumulates (arclogites) are found to have high Nb/Ta (average ~19) due to the presence of high Nb/Ta magmatic rutiles. We show that the crustal thickness control of Nb/Ta can be explained by rutile saturation being favored at higher pressures. Deep-seated magmatic differentiation, such as in continental arcs and other magmatic orogens, is thus necessary for making continents. 
    more » « less
  5. The prospect of creating ferroelectric or high permittivity nanomaterials provides motivation for investigating complex transition metal oxides of the form Ba(Ti, MV)O3, where M = Nb or Ta. Solid state processing typically produces mixtures of crystalline phases, rarely beyond minimally doped Nb/Ta. Using a modified sol-gel method, we prepared single phase nanocrystals of Ba(Ti, M)O3. Compositional and elemental analysis puts the empirical formulas close to BaTi0.5Nb0.5O3−δ and BaTi0.5Ta0.5O3−δ. For both materials, a reversible temperature dependent phase transition (non-centrosymmetric to symmetric) is observed in the Raman spectrum in the region 533–583 K (260–310 °C); for Ba(Ti, Nb)O3, the onset is at 543 K (270 °C); and for Ba(Ti, Ta)O3, the onset is at 533 K (260 °C), which are comparable with 390–393 K (117–120 °C) for bulk BaTiO3. The crystal structure was resolved by examination of the powder x-ray diffraction and atomic pair distribution function (PDF) analysis of synchrotron total scattering data. It was postulated whether the structure adopted at the nanoscale was single or double perovskite. Double perovskites (A2B′B″O6) are characterized by the type and extent of cation ordering, which gives rise to higher symmetry crystal structures. PDF analysis was used to examine all likely candidate structures and to look for evidence of higher symmetry. The feasible phase space that evolves includes the ordered double perovskite structure Ba2(Ti, MV)O6 (M = Nb, Ta) Fm-3m, a disordered cubic structure, as a suitable high temperature analog, Ba(Ti, MV)O3Pm-3m, and an orthorhombic Ba(Ti, MV)O3Amm2, a room temperature structure that presents an unusually high level of lattice displacement, possibly due to octahedral tilting, and indication of a highly polarized crystal. 
    more » « less