skip to main content


Title: Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation
The surfaces of rocky planets are mostly covered by basaltic crust, but Earth is unique in that it also has extensive regions of felsic crust, manifested in the form of continents. Exactly how felsic crust forms when basaltic magmas are the dominant products of melting the mantles of rocky planets is unclear. A fundamental part of the debate is centered on the low Nb/Ta of Earth’s continental crust (11–13) compared to basalts (15–16). Here, we show that during arc magma differentiation, the extent of Nb/Ta fractionation varies with crustal thickness with the lowest Nb/Ta seen in continental arc magmas. Deep arc cumulates (arclogites) are found to have high Nb/Ta (average ~19) due to the presence of high Nb/Ta magmatic rutiles. We show that the crustal thickness control of Nb/Ta can be explained by rutile saturation being favored at higher pressures. Deep-seated magmatic differentiation, such as in continental arcs and other magmatic orogens, is thus necessary for making continents.  more » « less
Award ID(s):
1850832
NSF-PAR ID:
10295390
Author(s) / Creator(s):
Date Published:
Journal Name:
Nature communications
Volume:
10
Issue:
235
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Continental arcs in Cordilleran orogenic systems display episodic changes in magma production rate, alternating between flare ups (70–90 km3 km􀀀 1 Myr􀀀 1) and lulls (< 20 km3 km􀀀 1 Myr􀀀 1) on timescales of tens of millions of years. Arc segments or individual magmatic suites may have even higher rates, up several 100 s of km3 km􀀀 1 Myr􀀀 1, during flare ups. These rates are largely determined by estimating volumes of arc crust, but do not reflect melt production from the mantle. The bulk of mantle-derived magmas are recycled back into the mantle by delamination of arc roots after differentiation in the deep crust. Mantle-derived melt production rates for continental arcs are estimated to be 140–215 km3 km􀀀 1 Myr􀀀 1 during flare ups and ≤ 15 km3 km􀀀 1 Myr􀀀 1 during lulls. Melt production rates averaged over multiple magmatic cycles are consistent with independent estimates for partial melting of the mantle wedge in subduction zones, however, the rates during flare ups and lulls are both anomalously high and anomalously low, respectively. The difference in mantle-derived melt production between flare ups and lulls is larger than predicted by petrologic and numerical models that explore the range of globally observed subduction parameters (e.g., convergence rate, height of the mantle wedge). This suggests that other processes are required to increase magmatism during flare ups and suppress magmatism during lulls. There are many viable explanations, but one possibility is that crystallized melts from the asthenospheric mantle wedge are temporarily stored in the deep lithosphere during lulls and then remobilized during flare ups. Basaltic melts may stall in the mantle lithosphere in inactive parts of the arc system, like the back-arc, refertilizing the mantle lithosphere and suppressing melt delivery to the lower crust. Subsequent landward arc migration (i.e., toward the interior of the continent) may encounter such refertilized mantle lithosphere magma source regions, contributing to magmatic activity during a flare up. A review of continental arcs globally suggests that flare ups commonly coincide with landward arc migration and that this migration may start tens of millions of years before the flare up occurs. The region of magmatic activity, or arc width, can also expand significantly during a flare up. Arc migration or expansion into different mantle source regions and across lithospheric and crustal boundaries can cause temporal shifts in the radiogenic isotopic composition of magmatism. In the absence of arc migration, temporal shifts are more muted. Isotopic studies of mantle xenoliths and exposures of deep arc crust suggest that that primary, mantle-derived magmas generated during flare ups reflect substantial contributions from the subcontinental mantle lithosphere. Arc migration may be caused by a variety of mechanisms, including slab anchoring or slab folding in the mantle transition zone that could generate changes in slab dip. Episodic slab shallowing is associated with many tectonic processes in Cordilleran orogenic systems, like alternations between shortening and extension in the upper plate. Studies of arc migration may help to link irregular magmatic production in continental arcs with geodynamic models for orogenic cyclicity. 
    more » « less
  2. Abstract Ignimbrite flare-ups are rare periods of intense silicic volcanism during which the pyroclastic volume and eruptive frequency is more than an order of magnitude higher than background activity. Investigating the compositional differences between flare-up and steady-state magmas provides critical constraints on the petrogenetic causes for the event and can offer unique opportunities to investigate the role of large-scale tectonic or geodynamic processes in arc magmatism. In this study, we focus on the bimodal Deschutes Formation ignimbrite flare-up of Central Oregon, which erupted unusually high volumes of pyroclastic material 6.25–5.45 Ma from a new axis of volcanism in the Cascades arc. This episode is marked by increased eruption rates and eruption of more silicic compositions relative to the Quaternary Cascade arc, which rarely erupts rhyolites. Ignimbrites are crystal-poor (<10%) dacite to rhyolites (mostly 65–77 wt.% SiO2) with anhydrous mineral assemblages and higher FeO/MgO, Y, Eu/Eu*, MREE and Zr/Sr, indicating drier magmatic evolution compared to the Quaternary arc, and are more similar to those from the rear-arc High Lava Plains (HLP) province that lies to the east. Magnetite-ilmenite oxybarometry indicates that Deschutes Formation felsic magmas tend to be hotter and more reduced (NNO-1 to NNO) than the Quaternary arc (NNO to NNO + 1.5). Rhyolite-MELTS geobarometry suggests complex storage of diverse Deschutes Formation magmas within the shallow crust (50–250 MPa), and the common co-eruption of multiple plagioclase populations, pumice compositions, and compositionally banded pumice suggest variable degrees of mixing and mingling of distinct magmas. Deschutes magmas also have low δ18Oplagioclase values that indicate partial melting and assimilation of hydrothermally altered shallow crust. Trace element systematics and rhyolite-MELTS modeling suggests that felsic pumice cannot be produced by simple fractionation of co-erupted mafic pumice or basaltic lavas, and requires a crustal melting origin, and trace elements and Pb isotopes suggest that young mafic crust may have been the primary protolith. We suggest that partial melting produced low-Si rhyolite melt (~72 wt.%) that acted as both a parent for the most evolved rhyolites, and as a mixing endmember to create the dacite to rhyodacite magmas with heterogenous plagioclase populations. Unlike the predominantly calc-alkaline basalts erupted in the Quaternary Cascade arc, Deschutes Formation primary basalts are mostly low-K tholeiites, indicative of decompression melting. These are similar to the compositions erupted during a contemporaneous pulse of low-K tholeiite volcanism across the whole HLP that reached into the Cascades rear-arc. We suggest that intra-arc extension focused decompression melts from the back-arc into the arc and that tensional stresses allowed this high flux of hot-dry-reduced basalt throughout the crustal column, causing partial melting of mafic protoliths and the production of hot-dry-reduced rhyolite melts. Depletion of incompatible elements in successive rhyolites implies progressive depletion in fertility of the protolith. Extension also allowed for the establishment of a robust hydrothermal system, and assimilation of hydrothermally-altered rocks by magmas residing in a shallow, complex storage network lead to low δ18O melts. Our findings suggest the integral role that extensional tectonics played in producing an unusual ignimbrite flare-up of hot-dry-reduced rhyolite magmas that are atypical of the Cascades arc and may be an important contributor to flare-ups at arcs worldwide. 
    more » « less
  3. Abstract

    The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U–Pb geochronology at ca. 148–153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have18O-enriched values (δ18O from 7 to 9.5‰) with correspondingly negative initial εHf values (− 2.0 to − 8.0). The WCA zircon have δ18O values between 6 and 7‰ and εHf values ranging between − 4.0 and + 1.5. Binary δ18O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust.

     
    more » « less
  4. Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810 ppm) increase with decreasing fosterite (Fo89 to Fo75), while Cr (29-364 ppm), V (4-11 ppm) and Ca (825-2390 ppm) decrease. Quantitative modeling shows that these trends in their entirety cannot be controlled by fractional crystallization under variable melt water H2O or oxygen fugacity (fO2), or co-crystallization of Cr-spinel. Instead, the variations support the existence of compositionally distinct melt batches during earliest melt evolution. Moreover, the trace element trends are qualitatively consistent with a model of progressive source depletion by serial melting (shown in olivine Ca, V and Cr) that is triggered by the repetitive addition of silicic slab components (shown by olivine Li). These findings suggest mantle source variations are not eliminated despite the thick crust these magmas pass during ascent. [1] Straub et al. (2013) J Petrol 54 (4): 665-701; [2] Straub et al. (2015) Geochim Cosmochim Acta 166: 29-52. 
    more » « less
  5. PhD Dissertation Abstract: The imposing andesite stratovolcano is the characteristic expression of subduction zone magmatism, posing hazards to coastal populations and bearing insight into deep Earth processes. On a map of a typical volcanic arc, one can easily distinguish the approximately linear alignment and regular spacing of these major edifices that stand out from a diffuse distribution of mafic volcanoes (e.g. the Quaternary Cascades; Hildreth, 2007). The andesitic composite volcanoes have a reputation for being complex, open systems: crystal zoning “stratigraphies,” diverse crystal cargoes including antecrysts or xenocrysts, quenched magmatic inclusions, and variations in isotopic signatures are among the many lines of evidence that these systems involve a variety of igneous processes and melt sources. To investigate the development and evolution of such transcrustal magma factories, I have conducted a detailed temporal, spatial, and geochemical characterization of a long-lived arc volcanic center in the southern Washington Cascades, the Goat Rocks volcanic complex. Results from ⁴⁰Ar/³⁹Ar and U/Pb geochronology constrain the lifespan of the Goat Rocks volcanic complex from ~3.1 Ma to ~100 ka. During this time, four major composite volcanoes were built (as well as several smaller volcanoes). From oldest to youngest, these are Tieton Peak, Bear Creek Mountain, Lake Creek volcano, and Old Snowy Mountain. Four volcanic stages are defined based on the lifespans of these centers and distinct compositional changes that occur from one to the next: Tieton Peak stage (3.1-2.6 Ma), Bear Creek Mountain stage (1.6-1.1 Ma), Lake Creek stage (1.1 Ma to 456 ka), and Old Snowy Mountain stage (440 ka to 115 ka). Two lava flow remnants also have ages in the interim between Tieton Peak stage and Bear Creek Mountain stage (2.3 Ma and 2.1 Ma), and their sources are not yet identified. The ages of the Bear Creek Mountain and Lake Creek stages in fact overlap, and the gap between Lake Creek stage and Old Snowy Mountain stage is only on the order of 10⁴ years. Based on supporting compositional evidence, the Bear Creek Mountain, Lake Creek, and Old Snowy Mountain stage volcanoes are considered to be the migrating surface expressions of a continuous magmatic system that was active over at least ~1.5 million years. It remains uncertain whether the gaps between the Tieton Peak stage, scattered early Pleistocene andesites, and Bear Creek Mountain stage are due to incomplete exposure/sampling or real quiescent periods earlier in the development of the Goat Rocks volcanic complex. Throughout the construction of the andesitic complex, mafic volcanoes were active on its periphery. These include the Miriam Creek volcano (~3.6-3.1 Ma), Devils Washbasin volcano (3.0-2.7 Ma), Hogback Mountain (1.1 Ma – 891 ka), Lakeview Mountain (194 ka), and Walupt Lake volcano (65 ka). Two basalt and basaltic andesite units (Qob₁ and Qob₂, 1.4 and 1.3 Ma; Hammond, 2017) also erupted from the Goat Rocks area, likely an older incarnation of Hogback Mountain. The suite of mafic magmas erupted in this region are all calcalkaline basalt (or basaltic andesite; CAB), but two compositional groups emerge from the trace element and isotopic data. Group 1 is LILE and LREE-enriched, with higher ⁸⁷Sr/⁸⁶Sr isotopes, and includes compositions from Devils Washbasin, Lower Hogback Mountain, and Lakeview Mountain. Group 2 is less enriched in LILE and LREE and lower in ⁸⁷Sr/⁸⁶Sr, and includes the compositions of Miriam Creek, Qob1, Upper Hogback Mountain, Walupt Lake, and Coleman Weedpatch. The two groups are recurrent through time and with no geographic distinction; in fact, both types were tapped by the Hogback Mountain volcano. Together both of these groups, alongside CABs from Mount Adams and various basalts from Mount St. Helens, form a compositional array between the basalts of the High Cascades and the intraplate-type basalts (IPB) of Mount Adams and Simcoe volcanic field. These results lead to three conclusions. 1) Variably subduction-modified mantle is distributed across the region, perhaps either as stratified layers or a web-like network of fluid pathways amongst less metasomatized mantle. 2) Transitional compositions between the IPBs and typical “High Cascades” CAB/HAOT signature suggest a broader influence of the mantle domain that feeds IPBs—if asthenospheric mantle through a slab window, as suggested by Mullen et al. (2017), then perhaps it bleeds in smaller quantities over a broader area. This compositional trend solidifies the interpretation of the southern Washington Cascades as a unique and coherent “segment” of the arc (the Washington segment of Pitcher and Kent, 2019). 3) The recurrence of variable mafic magma types through time, and with no geographic boundaries, indicates that the compositional evolution of the Goat Rocks volcanic complex was not likely driven by a change in mafic input. Indeed, the Sr, Nd, Hf, and Pb isotope ratios of the intermediate to felsic suite are closely aligned with the local basalts and suggest a limited role of crustal assimilation. Importantly, several mineral thermometers (zircon, ilmenite-magnetite pairs, and amphibole) align in recording higher crystallization temperatures in Bear Creek Mountain to early Lake Creek time, a cooling trend through the Lake Creek stage, and a more diverse range of temperatures in the transition to Old Snowy Mountain stage. Thus, it is suggested that the compositional evolution at Goat Rocks represents a thermal cycle of waxing and waning magmatic flux: where the period of Bear Creek Mountain to early Lake Creek volcanism was the climactic phase of a vertically extensive magma homogenization factory, then the system waned and cooled, ultimately losing its ability to filter, homogenize, and enrich magmas. 
    more » « less