skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Golub–Kahan vs. Monte Carlo: a comparison of bidiagonlization and a randomized SVD method for the solution of linear discrete ill-posed problems
Abstract Randomized methods can be competitive for the solution of problems with a large matrix of low rank. They also have been applied successfully to the solution of large-scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a partial singular value decomposition of a large matrix A that is of numerical low rank. The present paper compares a randomized method to a Krylov subspace method based on Golub–Kahan bidiagonalization with respect to accuracy and computing time and discusses characteristics of linear discrete ill-posed problems that make them well suited for solution by a randomized method.  more » « less
Award ID(s):
1720259
NSF-PAR ID:
10299622
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BIT Numerical Mathematics
ISSN:
0006-3835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The reduction of a large‐scale symmetric linear discrete ill‐posed problem with multiple right‐hand sides to a smaller problem with a symmetric block tridiagonal matrix can easily be carried out by the application of a small number of steps of the symmetric block Lanczos method. We show that the subdiagonal blocks of the reduced problem converge to zero fairly rapidly with increasing block number. This quick convergence indicates that there is little advantage in expressing the solutions of discrete ill‐posed problems in terms of eigenvectors of the coefficient matrix when compared with using a basis of block Lanczos vectors, which are simpler and cheaper to compute. Similarly, for nonsymmetric linear discrete ill‐posed problems with multiple right‐hand sides, we show that the solution subspace defined by a few steps of the block Golub–Kahan bidiagonalization method usually can be applied instead of the solution subspace determined by the singular value decomposition of the coefficient matrix without significant, if any, reduction of the quality of the computed solution.

     
    more » « less
  2. Abstract

    The analysis of linear ill-posed problems often is carried out in function spaces using tools from functional analysis. However, the numerical solution of these problems typically is computed by first discretizing the problem and then applying tools from finite-dimensional linear algebra. The present paper explores the feasibility of applying the Chebfun package to solve ill-posed problems with a regularize-first approach numerically. This allows a user to work with functions instead of vectors and with integral operators instead of matrices. The solution process therefore is much closer to the analysis of ill-posed problems than standard linear algebra-based solution methods. Furthermore, the difficult process of explicitly choosing a suitable discretization is not required.

     
    more » « less
  3. Non-stationary regularizing preconditioners have recently been proposed for the acceleration of classical iterative methods for the solution of linear discrete ill-posed problems. This paper explores how these preconditioners can be combined with the flexible GMRES iterative method. A new structure-respecting strategy to construct a sequence of regularizing preconditioners is proposed. We show that flexible GMRES applied with these preconditioners is able to restore images that have been contaminated by strongly non-symmetric blur, while several other iterative methods fail to do this. 
    more » « less
  4. In uncertainty quantification, it is commonly required to solve a forward model consisting of a partial differential equation (PDE) with a spatially varying uncertain coefficient that is represented as an affine function of a set of random variables, or parameters. Discretizing such models using stochastic Galerkin finite element methods (SGFEMs) leads to very high-dimensional discrete problems that can be cast as linear multi-term matrix equations (LMTMEs). We develop efficient computational methods for approximating solutions of such matrix equations in low rank. To do this, we follow an alternating energy minimization (AEM) framework, wherein the solution is represented as a product of two matrices, and approximations to each component are sought by solving certain minimization problems repeatedly. Inspired by proper generalized decomposition methods, the iterative solution algorithms we present are based on a rank-adaptive variant of AEM methods that successively computes a rank-one solution component at each step. We introduce and evaluate new enhancement procedures to improve the accuracy of the approximations these algorithms deliver. The efficiency and accuracy of the enhanced AEM methods is demonstrated through numerical experiments with LMTMEs associated with SGFEM discretizations of parameterized linear elliptic PDEs. 
    more » « less
  5. Abstract

    Discrete ill‐posed inverse problems arise in many areas of science and engineering. Their solutions are very sensitive to perturbations in the data. Regularization methods aim at reducing this sensitivity. This article considers an iterative regularization method, based on iterated Tikhonov regularization, that was proposed in M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill‐posed problems, with application to image deblurring,Inverse Problems, 29 (2013), Art. 095008, 16 pages. In this method, the exact operator is approximated by an operator that is easier to work with. However, the convergence theory requires the approximating operator to be spectrally equivalent to the original operator. This condition is rarely satisfied in practice. Nevertheless, this iterative method determines accurate image restorations in many situations. We propose a modification of the iterative method, that relaxes the demand of spectral equivalence to a requirement that is easier to satisfy. We show that, although the modified method is not an iterative regularization method, it maintains one of the most important theoretical properties for this kind of methods, namely monotonic decrease of the reconstruction error. Several computed experiments show the good performances of the proposed method.

     
    more » « less