Abstract The reduction of a large‐scale symmetric linear discrete ill‐posed problem with multiple right‐hand sides to a smaller problem with a symmetric block tridiagonal matrix can easily be carried out by the application of a small number of steps of the symmetric block Lanczos method. We show that the subdiagonal blocks of the reduced problem converge to zero fairly rapidly with increasing block number. This quick convergence indicates that there is little advantage in expressing the solutions of discrete ill‐posed problems in terms of eigenvectors of the coefficient matrix when compared with using a basis of block Lanczos vectors, which are simpler and cheaper to compute. Similarly, for nonsymmetric linear discrete ill‐posed problems with multiple right‐hand sides, we show that the solution subspace defined by a few steps of the block Golub–Kahan bidiagonalization method usually can be applied instead of the solution subspace determined by the singular value decomposition of the coefficient matrix without significant, if any, reduction of the quality of the computed solution.
more »
« less
Golub–Kahan vs. Monte Carlo: a comparison of bidiagonlization and a randomized SVD method for the solution of linear discrete ill-posed problems
Abstract Randomized methods can be competitive for the solution of problems with a large matrix of low rank. They also have been applied successfully to the solution of large-scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a partial singular value decomposition of a large matrix A that is of numerical low rank. The present paper compares a randomized method to a Krylov subspace method based on Golub–Kahan bidiagonalization with respect to accuracy and computing time and discusses characteristics of linear discrete ill-posed problems that make them well suited for solution by a randomized method.
more »
« less
- Award ID(s):
- 1720259
- PAR ID:
- 10299622
- Date Published:
- Journal Name:
- BIT Numerical Mathematics
- ISSN:
- 0006-3835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tikhonov regularization is commonly used in the solution of linear discrete ill-posed problems. It is known that iterated Tikhonov regularization often produces approximate solutions of higher quality than (standard) Tikhonov regularization. This paper discusses iterated Tikhonov regularization for large-scale problems with a general regularization matrix. Specifically, the original problem is reduced to small size by application of a fairly small number of steps of the Arnoldi or Golub-Kahan processes, and iterated Tikhonov is applied to the reduced problem. The regularization parameter is determined by using an extension of a technique first described by Donatelli and Hanke for quite special coefficient matrices. Convergence of the method is established and computed examples illustrate its performance.more » « less
-
Symmetric Nonnegative Matrix Factorization (SymNMF) is a technique in data analysis and machine learning that approximates a symmetric matrix with a product of a nonnegative, low-rank matrix and its transpose. To design faster and more scalable algorithms for SymNMF, we develop two randomized algorithms for its computation. The first algorithm uses randomized matrix sketching to compute an initial low-rank approximation to the input matrix and proceeds to rapidly compute a SymNMF of the approximation. The second algorithm uses randomized leverage score sampling to approximately solve constrained least squares problems. Many successful methods for SymNMF rely on (approximately) solving sequences of constrained least squares problems. We prove theoretically that leverage score sampling can approximately solve nonnegative least squares problems to a chosen accuracy with high probability. Additionally, we prove sampling complexity results for previously proposed hybrid sampling techniques which deterministically include high leverage score rows. This hybrid scheme is crucial for obtaining speedups in practice. Finally, we demonstrate that both methods work well in practice by applying them to graph clustering tasks on large real world data sets. These experiments show that our methods approximately maintain solution quality and achieve significant speedups for both large dense and large sparse problems.more » « less
-
Non-stationary regularizing preconditioners have recently been proposed for the acceleration of classical iterative methods for the solution of linear discrete ill-posed problems. This paper explores how these preconditioners can be combined with the flexible GMRES iterative method. A new structure-respecting strategy to construct a sequence of regularizing preconditioners is proposed. We show that flexible GMRES applied with these preconditioners is able to restore images that have been contaminated by strongly non-symmetric blur, while several other iterative methods fail to do this.more » « less
-
A direct solver is introduced for solving overdetermined linear systems involving nonuniform discrete Fourier transform matrices. Such matrices can be transformed into a Cauchy-like form that has hierarchical low rank structure. The rank structure of this matrix is explained, and it is shown that the ranks of the relevant submatrices grow only logarithmically with the number of columns of the matrix. A fast rank-structured hierarchical approximation method based on this analysis is developed, along with a hierarchical least-squares solver for these and related systems. This result is a direct method for inverting nonuniform discrete transforms with a complexity that is usually nearly linear with respect to the degrees of freedom in the problem. This solver is benchmarked against various iterative and direct solvers in the setting of inverting the one-dimensional type-II (or forward) transform, for a range of condition numbers and problem sizes (up to 4 × 10 by 2 × 10 ). These experiments demonstrate that this method is especially useful for large problems with multiple right-hand sides.more » « less
An official website of the United States government

