skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating Robustness of Sequence-based Deepfake Detector Models by Adversarial Perturbation
Deepfake videos are getting better in quality and can be used for dangerous disinformation campaigns. The pressing need to detect these videos has motivated researchers to develop different types of detection models. Among them, the models that utilize temporal information (i.e., sequence-based models) are more effective at detection than the ones that only detect intra-frame discrepancies. Recent work has shown that the latter detection models can be fooled with adversarial examples, leveraging the rich literature on crafting adversarial (still) images. It is less clear, however, how well these attacks will work on sequence-based models that operate on information taken over multiple frames. In this paper, we explore the effectiveness of the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner šæ2-norm attack to fool sequence-based deepfake detector models in both the white-box and black-box settings. The experimental results show that the attacks are effective with a maximum success rate of 99.72% and 67.14% in the white-box and black-box attack scenarios, respectively. This highlights the importance of developing more robust sequence-based deepfake detectors and opens up directions for future research.  more » « less
Award ID(s):
2040209
PAR ID:
10354760
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 1st Workshop on Security Implications of Deepfakes and Cheapfakes
Page Range / eLocation ID:
13 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a black-box setting, the adversary only has API access to the target model and each query is expensive. Prior work on black-box adversarial examples follows one of two main strategies: (1) transfer attacks use white-box attacks on local models to find candidate adversarial examples that transfer to the target model, and (2) optimization-based attacks use queries to the target model and apply optimization techniques to search for adversarial examples. We propose hybrid attacks that combine both strategies, using candidate adversarial examples from local models as starting points for optimization-based attacks and using labels learned in optimization-based attacks to tune local models for finding transfer candidates. We empirically demonstrate on the MNIST, CIFAR10, and ImageNet datasets that our hybrid attack strategy reduces cost and improves success rates, and in combination with our seed prioritization strategy, enables batch attacks that can efficiently find adversarial examples with only a handful of queries. 
    more » « less
  2. Panoptic perception models in autonomous driving use deep learning models to interpret their surroundings and make real-time decisions. However, these models are susceptible, carefully designed noise can fool models all while being imperceptible to humans. In this work, we investigate the impact of blackbox adversarial noise attacks on three core perception tasks: drivable area recognition, lane line segmentation, and object detection. Unlike white-box attacks, black-box attacks assume no knowledge of the model’s internal parameters making them a more realistic and challenging threat scenario. Our goal is to evaluate how such an attack affects the model’s predictions and explore countermeasures towards such attacks. In response to our implemented attack, we have tested various defense methods. With each defense method, we have assessed the recovery on prediction accuracy. This research aims to provide valuable insights into the vulnerabilities of panoptic perception models and highlights strategies for enhancing their resilience against adversarial manipulation within real-world scenarios. All our attacks are performed against images from the BDD100K dataset. 
    more » « less
  3. null (Ed.)
    As machine learning is deployed in more settings, including in security-sensitive applications such as malware detection, the risks posed by adversarial examples that fool machine-learning classifiers have become magnified. Black-box attacks are especially dangerous, as they only require the attacker to have the ability to query the target model and observe the labels it returns, without knowing anything else about the model. Current black-box attacks either have low success rates, require a high number of queries, produce adversarial images that are easily distinguishable from their sources, or are not flexible in controlling the outcome of the attack. In this paper, we present AdversarialPSO, (Code available: https://github.com/rhm6501/AdversarialPSOImages) a black-box attack that uses few queries to create adversarial examples with high success rates. AdversarialPSO is based on Particle Swarm Optimization, a gradient-free evolutionary search algorithm, with special adaptations to make it effective for the black-box setting. It is flexible in balancing the number of queries submitted to the target against the quality of the adversarial examples. We evaluated AdversarialPSO on CIFAR-10, MNIST, and Imagenet, achieving success rates of 94.9%, 98.5%, and 96.9%, respectively, while submitting numbers of queries comparable to prior work. Our results show that black-box attacks can be adapted to favor fewer queries or higher quality adversarial images, while still maintaining high success rates. 
    more » « less
  4. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and white-box attack scenarios. 
    more » « less
  5. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and white-box attack scenarios. 
    more » « less