We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8urad/s/rt.Hz for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications.
more »
« less
Reflectionless standing-wave operation in microring resonators
We demonstrate a scheme for microring resonators to operate as standing-wave resonators while eliminating reflections and maintaining traveling-wave-resonator-like through-port response, potentially enabling interdigitated p-n junction microring modulators to achieve higher performance than other junction geometries.
more »
« less
- Award ID(s):
- 2023751
- PAR ID:
- 10354867
- Date Published:
- Journal Name:
- 2022 Optical Fiber Communications Conference and Exhibition (OFC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High‐quality‐factor microring resonators are highly desirable in many applications. Fabricating a microring resonator typically requires delicate instruments to ensure a smooth side wall of waveguides and 100‐nm critical feature size in the coupling region. In this work, a new method “damascene soft nanoimprinting lithography” is demonstrated that can create high‐fidelity waveguide by simply backfilling an imprinted cladding template with a high refractive index polymer core. This method can easily realize high Q‐factor polymer microring resonators (e.g., ≈5 × 105around 770 nm wavelength) without the use of any expensive instruments and can be conducted in a normal lab environment. The high Q‐factors can be attributed to the residual layer‐free feature and controllable meniscus cross‐section profile of the filled polymer core. Furthermore, the new method is compatible with different polymers, yields low fabrication defects, enables new functionalities, and allows flexible substrate. These benefits can broaden the applicability of the fabricated microring resonator.more » « less
-
We demonstrate how the presence of gain-loss contrast between two coupled identical resonators can be used as a new degree of freedom to enhance the modulation frequency response of laser diodes. An electrically pumped microring laser system with a bending radius of 50 μm is fabricated on an InAlGaAs/InP MQW p-i-n structure. The room temperature continuous wave (CW) laser threshold current of the device is 27 mA. By adjusting the ratio between the injection current levels in the two coupled microrings, our experimental results clearly show a bandwidth improvement by up to 1.63 times the fundamental resonant frequency of the individual device. This matches well with our rate equation simulation model.more » « less
-
Kerr-microresonator frequency combs in integrated photonics waveguides are promising technologies for next-generation positioning, navigation, and timing applications, with advantages that include platforms that are mass-producible and CMOS-compatible and spectra that are phase-coherent and octave-spanning. Fundamental thermal noise in the resonator material typically limits the timing and frequency stability of a microcomb. The small optical mode volume of the microresonators exaggerates this effect, as it both increases the magnitude and shortens the timescale of thermodynamic fluctuations. In this work, we investigate thermal instability in silicon nitride microring resonators as well as techniques for reducing their effects on the microcomb light. We characterize the time-dependent thermal response in silicon nitride microring resonators through experimental measurements and finite element method simulations. Through fast control of the pump laser frequency, we reduce thermal recoil due to heating. Finally, we demonstrate the utility of a coupled microresonator system with tunable mode interactions to increase the stability of a soliton against thermal shifts.more » « less
An official website of the United States government

