skip to main content


Title: Architecture of the Genotype-Phenotype Map and the Coevolution of Complexity
The addition of parasites to a host population can drive an escalation in the host population's phenotypic complexity – even in the absence of a direct fitness advantage for this increase. Parasites restrict certain regions of the genotype space, decreasing the fitness and the probability of survival of particular host phenotypes. While many artificial life frameworks model a direct correlation between genotype and fitness, the structure of genotype-phenotype maps can have important effects on evolutionary dynamics. Using a simple coarse-grained model for phenotypic transitions during evolution, we show that the escalation in phenotypic complexity under neutral co-evolution is dependent on the structure of the genotype-phenotype map. We discuss these results using the metaphor of evolutionary spandrels and highlight how these structural considerations might allow us to capture biological phenomena more accurately.  more » « less
Award ID(s):
1813069
NSF-PAR ID:
10354949
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ALIFE 2022: The 2022 Conference on Artificial Life
Page Range / eLocation ID:
66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype‐to‐phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal‐response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.

     
    more » « less
  2. Wilson, Daniel ; Parkhill, Julian (Ed.)
    ABSTRACT A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes , being governed by genetic variation encoded not only by the host’s own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here, we use naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti paired with two genotypes of the host Medicago truncatula in four genome-wide association studies (GWAS) to determine the genomic architecture of a key symbiotic extended phenotype— partner quality , or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, (i) loci whose identities depend on the environment, (ii) those that depend on the host genotype with which rhizobia interact, and (iii) universal loci that are likely important in all or most environments. IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis. 
    more » « less
  3. Host populations often evolve defenses against parasites due to the significant fitness costs imposed by infection. However, adaptation to a specific parasite may alter the effectiveness of the host’s defenses in general. Consequently, the specificity of host defense may be influenced by a host population’s evolutionary history with parasites. Further, the degree of reciprocal change within an interaction may profoundly alter the range of host defense, given that antagonistic coevolutionary interactions are predicted to favor defense against specific parasite genotypes. Here, we examined the effect of host evolutionary history on host defense range by assessing the mortality rates of Caenorhabditis elegans host populations exposed to an array of Serratia marcescens bacterial parasite strains. Importantly, each of the host populations were derived from the same genetic background but have different experimental evolution histories with parasites. Each of these histories (exposure to either heat-killed, fixed genotype, or coevolving parasites) carries a different level of evolutionary reciprocity. Overall, we observed an effect of host evolutionary history in that previously coevolved host populations were generally the most susceptible to novel parasite strains. This data demonstrates that host evolutionary history can have a significant impact on host defense, and that host-parasite coevolution can increase host susceptibility to novel parasites. 
    more » « less
  4. Abstract

    Strong selection can cause rapid evolutionary change, but temporal fluctuations in the form, direction and intensity of selection can limit net evolutionary change over longer time periods. Fluctuating selection could affect molecular diversity levels and the evolution of plasticity and ecological specialization. Nonetheless, this phenomenon remains understudied, in part because of analytical limitations and the general difficulty of detecting selection that does not occur in a consistent manner. Herein, I fill this analytical gap by presenting an approximate Bayesian computation (ABC) method to detect and quantify fluctuating selection on polygenic traits from population genomic time‐series data. I propose a model for environment‐dependent phenotypic selection. The evolutionary genetic consequences of selection are then modelled based on a genotype–phenotype map. Using simulations, I show that the proposed method generates accurate and precise estimates of selection when the generative model for the data is similar to the model assumed by the method. The performance of the method when applied to an evolve‐and‐resequence study of host adaptation in the cowpea seed beetle (Callosobruchus maculatus) was more idiosyncratic and depended on specific analytical choices. Despite some limitations, these results suggest the proposed method provides a powerful approach to connect the causes of (variable) selection to traits and genome‐wide patterns of evolution. Documentation and open‐source computer software (fsabc) implementing this method are available fromgithub(https://github.com/zgompert/fsabc.git).

     
    more » « less
  5. During the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli . An analysis of the empirical fitness landscape revealed mutation-by-mutation-by-host-genotype interactions that demonstrate coevolution modified the contours of λ’s landscape. Computer simulations of λ’s evolution on a static versus shifting fitness landscape showed that the changes in contours increased λ’s chances of evolving the ability to use a new host receptor. By coupling sequencing and pairwise competition experiments, we demonstrated that the first mutation λ evolved en route to the innovation would only evolve in the presence of the ancestral host, whereas later steps in λ’s evolution required the shift to a resistant host. When time-shift replays of the coevolution experiment were run where host evolution was artificially accelerated, λ did not innovate to use the new receptor. This study provides direct evidence for the role of coevolution in driving evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving ecological communities. 
    more » « less