skip to main content

This content will become publicly available on May 20, 2023

Title: When SWEETs Turn Tweens: Updates and Perspectives
Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.
Authors:
; ; ; ;
Award ID(s):
1942722
Publication Date:
NSF-PAR ID:
10355189
Journal Name:
Annual Review of Plant Biology
Volume:
73
Issue:
1
Page Range or eLocation-ID:
379 to 403
ISSN:
1543-5008
Sponsoring Org:
National Science Foundation
More Like this
  1. In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 ( Sh2 ) and isoamylase type DBE Sugary1 ( Su1 ). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1 ) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1 , to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2 , and su1 ) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3′ RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transportersmore »and of genes for ABA signaling. Key regulators of starch biosynthesis and grain filling were identified. Notably, this includes Class II trehalose 6-phosphate synthases, Hexokinase1 , and Apetala2 transcription factor-like (AP2/ERF) transcription factors. Additionally, our results provide insight into the mechanism of Sugary enhancer1 , suggesting a potential role in regulating GA signaling via GRAS transcription factor Scarecrow-like1 .« less
  2. Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A.  punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N 2 -derived NH 4 + , which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme–dependent manner as well as that of a SWEET transporter that was initially independent of N 2 -derived NH 4 + . The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage ofmore »land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .« less
  3. SWEETs are transporters with homologs in Archeae, plants, some fungi, and animals. As the only transporters known to facilitate the cellular release of sugars in plants, SWEETs play critical roles in the allocation of sugars from photosynthetic leaves to storage tissues in seeds, fruits, and tubers. Here, we report the design and use of genetically encoded biosensors to measure the activity of SWEETs. We created a SweetTrac1 sensor by inserting a circularly permutated green fluorescent protein into the Arabidopsis SWEET1, resulting in a chimera that translates substrate binding during the transport cycle into detectable changes in fluorescence intensity. We demonstrate that a combination of cell sorting and bioinformatics can accelerate the design of biosensors and formulate a mass action kinetics model to correlate the fluorescence response of SweetTrac1 with the transport of glucose. Our analysis suggests that SWEETs are low-affinity, symmetric transporters that can rapidly equilibrate intra- and extracellular concentrations of sugars. This approach can be extended to SWEET homologs and other transporters.
  4. Abstract

    Fruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in theCitrullusgenus. Population genomic analyses reveal the evolutionary history ofCitrullus, suggesting independent evolutions inCitrullus amarusand the lineage containingCitrullus lanatusandCitrullus mucosospermus. Our findings indicate that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement. A non-bitter allele, arising in the progenitor of sweet watermelon, is largely fixed inC. lanatus. Selection for flesh sweetness started in the progenitor ofC. lanatusand continues through modern breeding on loci controlling raffinose catabolism and sugar transport. Fruit flesh coloration and sugar accumulation might have co-evolved through shared genetic components including a sugar transporter gene. This study provides valuable genomic resources and sheds light on watermelon speciation and breeding history.

  5. Phosphate is an indispensable metabolite in a wide variety of cells and is involved in nucleotide and lipid synthesis, signaling, and chemical energy storage. Proton-coupled phosphate transporters within the major facilitator family are crucial for phosphate uptake in plants and fungi. Similar proton-coupled phosphate transporters have been found in different protozoan parasites that cause human diseases, in breast cancer cells with elevated phosphate demand, in osteoclast-like cells during bone reabsorption, and in human intestinal Caco2BBE cells for phosphate homeostasis. However, the mechanism of proton-driven phosphate transport remains unclear. Here, we demonstrate in a eukaryotic, high-affinity phosphate transporter fromPiriformospora indica(PiPT) that deprotonation of aspartate 324 (D324) triggers phosphate release. Quantum mechanics/molecular mechanics molecular dynamics simulations combined with free energy sampling have been employed here to identify the proton transport pathways from D324 upon the transition from the occluded structure to the inward open structure and phosphate release. The computational insights so gained are then corroborated by studies of D45N and D45E amino acid substitutions via mutagenesis experiments. Our findings confirm the function of the structurally predicted cytosolic proton exit tunnel and suggest insights into the role of the titratable phosphate substrate.