skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Distribution-aware Query Answering in Data Markets
Addressing the increasing demand for data exchange has led to the development of data markets that facilitate transactional interactions between data buyers and data sellers. Still, cost-effective and distribution-aware query answering is a substantial challenge in these environments. In this paper, while differentiating different types of data markets, we take the initial steps towards addressing this challenge. In particular, we envision a unified query answering framework and discuss its functionalities. Our framework enables integrating data from different sources in a data market into a dataset that meets user-provided schema and distribution requirements cost-effectively. In order to facilitate consumers' query answering, our system discovers data views in the form of join-paths on relevant data sources, defines a get-next operation to query views, and estimates the cost of get-next on each view. The query answering engine then selects the next views to sample sequentially to collect the output data. Depending on the knowledge of the system from the underlying data sources, the view selection problem can be modeled as an instance of a multi-arm bandit or coupon collector's problem.  more » « less
Award ID(s):
2107290 2107050
PAR ID:
10355230
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
15
Issue:
11
ISSN:
2150-8097
Page Range / eLocation ID:
3137 - 3144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. fine resolutions but available training data is scarce. In this paper, we propose classification algorithms that leverage supervision from coarser resolutions to help train models on finer resolutions. The different resolutions are modeled as different views of the data in a multi-view framework that exploits the complementarity of features across different views to improve models on both views. Unlike traditional multi-view learning problems, the key challenge in our case is that there is no one-to-one correspondence between instances across different views in our case, which requires explicit modeling of the correspondence of instances across resolutions. We propose to use the features of instances at different resolutions to learn the correspondence between instances across resolutions using attention mechanism. Experiments on the real-world application of mapping urban areas using satellite observations and sentiment classification on text data shows the effectiveness of the proposed methods. 
    more » « less
  2. Data from many real-world applications can be naturally represented by multi-view networks where the different views encode different types of relationships (e.g., friendship, shared interests in music, etc.) between real-world individuals or entities. There is an urgent need for methods to obtain low-dimensional, information preserving and typically nonlinear embeddings of such multi-view networks. However, most of the work on multi-view learning focuses on data that lack a network structure, and most of the work on network embeddings has focused primarily on single-view networks. Against this background, we consider the multi-view network representation learning problem, i.e., the problem of constructing low-dimensional information preserving embeddings of multi-view networks. Specifically, we investigate a novel Generative Adversarial Network (GAN) framework for Multi-View Network Embedding, namely MEGAN, aimed at preserving the information from the individual network views, while accounting for connectivity across (and hence complementarity of and correlations between) different views. The results of our experiments on two real-world multi-view data sets show that the embeddings obtained using MEGAN outperform the state-of-the-art methods on node classification, link prediction and visualization tasks. 
    more » « less
  3. Proteins, often represented as multi-modal data of 1D sequences and 2D/3D structures, provide a motivating example for the communities of machine learning and computational biology to advance multi-modal representation learning. Protein language models over sequences and geometric deep learning over structures learn excellent single-modality representations for downstream tasks. It is thus desirable to fuse the single-modality models for better representation learning, but it remains an open question on how to fuse them effectively into multi-modal representation learning with a modest computational cost yet significant downstream performance gain. To answer the question, we propose to make use of separately pretrained single-modality models, integrate them in parallel connections, and continuously pretrain them end-to-end under the framework of multimodal contrastive learning. The technical challenge is to construct views for both intra- and inter-modality contrasts while addressing the heterogeneity of various modalities, particularly various levels of semantic robustness. We address the challenge by using domain knowledge of protein homology to inform the design of positive views, specifically protein classifications of families (based on similarities in sequences) and superfamilies (based on similarities in structures). We also assess the use of such views compared to, together with, and composed to other positive views such as identity and cropping. Extensive experiments on enzyme classification and protein function prediction benchmarks demonstrate the potential of domain-informed view construction and combination in multi-modal contrastive learning 
    more » « less
  4. Multi-View Clustering (MVC) aims to find the cluster structure shared by multiple views of a particular dataset. Existing MVC methods mainly integrate the raw data from different views, while ignoring the high-level information. Thus, their performance may degrade due to the conflict between heterogeneous features and the noises existing in each individual view. To overcome this problem, we propose a novel Multi-View Ensemble Clustering (MVEC) framework to solve MVC in an Ensemble Clustering (EC) way, which generates Basic Partitions (BPs) for each view individually and seeks for a consensus partition among all the BPs. By this means, we naturally leverage the complementary information of multi-view data in the same partition space. Instead of directly fusing BPs, we employ the low-rank and sparse decomposition to explicitly consider the connection between different views and detect the noises in each view. Moreover, the spectral ensemble clustering task is also involved by our framework with a carefully designed constraint, making MVEC a unified optimization framework to achieve the final consensus partition. Experimental results on six real-world datasets show the efficacy of our approach compared with both MVC and EC methods. 
    more » « less
  5. Data from many real-world applications can be nat- urally represented by multi-view networks where the different views encode different types of rela- tionships (e.g., friendship, shared interests in mu- sic, etc.) between real-world individuals or enti- ties. There is an urgent need for methods to ob- tain low-dimensional, information preserving and typically nonlinear embeddings of such multi-view networks. However, most of the work on multi- view learning focuses on data that lack a net- work structure, and most of the work on net- work embeddings has focused primarily on single- view networks. Against this background, we con- sider the multi-view network representation learn- ing problem, i.e., the problem of constructing low- dimensional information preserving embeddings of multi-view networks. Specifically, we investigate a novel Generative Adversarial Network (GAN) framework for Multi-View Network Embedding, namely MEGAN, aimed at preserving the informa- tion from the individual network views, while ac- counting for connectivity across (and hence com- plementarity of and correlations between) differ- ent views. The results of our experiments on two real-world multi-view data sets show that the em- beddings obtained using MEGAN outperform the state-of-the-art methods on node classification, link prediction and visualization tasks. 
    more » « less