skip to main content


Title: Performance assessment of ensembles of in situ workflows under resource constraints
Scientific breakthroughs in biomolecular methods and improvements in hardware technology have shifted from a long-running simulation to a large set of shorter simulations running simultaneously, called an ensemble. In an ensemble, simulations are usually coupled with analyses of data produced by the simulations. In situ methods can be used to analyze large volumes of data generated by scientific simulations at runtime (i.e., simulations and analyses are performed concurrently). In this work, we study the execution of ensemble-based simulations paired with in situ analyses using in-memory staging methods. Using an ensemble of molecular dynamics in situ workflows with multiple simulations and analyses, we first show that collecting traditional metrics such as makespan, instructions per cycle, memory usage, or cache miss ratio is not sufficient to characterize complex behaviors of ensembles. We propose a method to evaluate the performance of ensembles of workflows that captures multiple resource usage aspects: resource efficiency, resource allocation, and resource provisioning. Experimental results demonstrate that the proposed method can effectively distinguish the performance of different component placements in an ensemble with up to 32 ensemble members. By evaluating different co-location scenarios, our proposed performance indicators demonstrate benefits of co-locating simulation and coupled analyses within a compute node.  more » « less
Award ID(s):
1841758 1664162 1741057
NSF-PAR ID:
10355274
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Concurrency and Computation: Practice and Experience
ISSN:
1532-0626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientific breakthroughs in biomolecular methods and improvements in hardware technology have shifted from a single long-running simulation to a large set of shorter simulations running simultaneously, called an ensemble. In an ensemble, each independent simulation is usually coupled with several analyses that apply identical or distinct algorithms on data produced by the corresponding simulation. Today, In situ methods are used to analyze large volumes of data generated by scientific simulations at runtime. This work studies the execution of ensemble-based simulations paired with In situ analyses using in-memory staging methods. Because simulations and analyses forming an ensemble typically run concurrently, deploying an ensemble requires efficient co-location-aware strategies, making sure the data flow between simulations and analyses that form an In situ workflow is efficient. Using an ensemble of molecular dynamics In situ workflows with multiple simulations and analyses, we first show that collecting traditional metrics such as makespan, instructions per cycle, memory usage, or cache miss ratio is not sufficient to characterize the complex behaviors of ensembles. Thus, we propose a method to evaluate the performance of ensembles of workflows that captures resource usage (efficiency), resource allocation, and component placement. Experimental results demonstrate that our proposed method can effectively capture the performance of different component placements in an ensemble. By evaluating different co-location scenarios, our performance indicator demonstrates improvements of up to four orders of magnitude when co-locating simulation and coupled analyses within a single computational host. 
    more » « less
  2. Abstract

    The formation of biomolecular materials via dynamical interfacial processes, such as self-assembly and fusion, for diverse compositions and external conditions can be efficiently probed using ensemble Molecular Dynamics (MD). However, this approach requires many simulations when investigating a large composition phase space. In addition, there is difficulty in predicting whether each simulation will yield biomolecular materials with the desired properties or outcomes and how long each simulation will run. These difficulties can be overcome by rules-based management systems, including intermittent inspection, variable sampling, and premature termination or extension of the individual MD simulations. Automating such a management system can significantly improve runtime efficiency and reduce the burden of organizing large ensembles of MD simulations. To this end, a computational framework, the Pipelines for Automating Compliance-based Elimination and Extension (PACE2), is proposed for high-throughput ensemble biomolecular materials simulations. The PACE2framework encompasses Candidate pipelines, where each pipeline includes temporally separated simulation and analysis tasks. When a MD simulation is completed, an analysis task is triggered, which evaluates the MD trajectory for compliance. Compliant simulations are extended to the next MD phase with a suitable sample rate to allow additional, detailed analysis. Non-compliant simulations are eliminated, and their computational resources are reallocated or released. The framework is designed to run on local desktop computers and high-performance computing resources. Preliminary scientific results enabled by the use of PACE2framework are presented, which demonstrate its potential and validates its function. In the future, the framework will be extended to address generalized workflows and investigate composition-structure-property relations for other classes of materials.

     
    more » « less
  3. As large-scale scientific simulations and big data analyses become more popular, it is increasingly more expensive to store huge amounts of raw simulation results to perform post-analysis. To minimize the expensive data I/O, “in-situ” analysis is a promising approach, where data analysis applications analyze the simulation generated data on the fly without storing it first. However, it is challenging to organize, transform, and transport data at scales between two semantically different ecosystems due to the distinct software and hardware difference. To tackle these challenges, we design and implement the X-Composer framework. X-Composer connects cross-ecosystem applications to form an “in-situ” scientific workflow, and provides a unified approach and recipe for supporting such hybrid in-situ workflows on distributed heterogeneous resources. X-Composer reorganizes simulation data as continuous data streams and feeds them seamlessly into the Cloud-based stream processing services to minimize I/O overheads. For evaluation, we use X-Composer to set up and execute a cross-ecosystem workflow, which consists of a parallel Computational Fluid Dynamics simulation running on HPC, and a distributed Dynamic Mode Decomposition analysis application running on Cloud. Our experimental results show that X-Composer can seamlessly couple HPC and Big Data jobs in their own native environments, achieve good scalability, and provide high-fidelity analytics for ongoing simulations in real-time. 
    more » « less
  4. Summary

    Nowadays, we have entered the era of big data. In the area of high performance computing, large‐scale simulations can generate huge amounts of data with potentially critical information. However, these data are usually saved in intermediate files and are not instantly visible until advanced data analytics techniques are applied after reading all simulation data from persistent storages (eg, local disks or a parallel file system). This approach puts users in a situation where they spend long time on waiting for running simulations while not knowing the status of the running job. In this paper, we build a new computational framework to couple scientific simulations with multi‐step machine learning processes and in‐situ data visualizations. We also design a new scalable simulation‐time clustering algorithm to automatically detect fluid flow anomalies. This computational framework is built upon different software components and provides plug‐in data analysis and visualization functions over complex scientific workflows. With this advanced framework, users can monitor and get real‐time notifications of special patterns or anomalies from ongoing extreme‐scale turbulent flow simulations.

     
    more » « less
  5. Abstract

    Estimating and predicting the state of the atmosphere is a probabilistic problem for which an ensemble modeling approach often is taken to represent uncertainty in the system. Common methods for examining uncertainty and assessing performance for ensembles emphasize pointwise statistics or marginal distributions. However, these methods lose specific information about individual ensemble members. This paper explores contour band depth (cBD), a method of analyzing uncertainty in terms of contours of scalar fields. cBD is fully nonparametric and induces an ordering on ensemble members that leads to box-and-whisker-plot-type visualizations of uncertainty for two-dimensional data. By applying cBD to synthetic ensembles, we demonstrate that it provides enhanced information about the spatial structure of ensemble uncertainty. We also find that the usefulness of the cBD analysis depends on the presence of multiple modes and multiple scales in the ensemble of contours. Finally, we apply cBD to compare various convection-permitting forecasts from different ensemble prediction systems and find that the value it provides in real-world applications compared to standard analysis methods exhibits clear limitations. In some cases, contour boxplots can provide deeper insight into differences in spatial characteristics between the different ensemble forecasts. Nevertheless, identification of outliers using cBD is not always intuitive, and the method can be especially challenging to implement for flow that exhibits multiple spatial scales (e.g., discrete convective cells embedded within a mesoscale weather system).

    Significance Statement

    Predictions of Earth’s atmosphere inherently come with some degree of uncertainty owing to incomplete observations and the chaotic nature of the system. Understanding that uncertainty is critical when drawing scientific conclusions or making policy decisions from model predictions. In this study, we explore a method for describing model uncertainty when the quantities of interest are well represented by contours. The method yields a quantitative visualization of uncertainty in both the location and the shape of contours to an extent that is not possible with standard uncertainty quantification methods and may eventually prove useful for the development of more robust techniques for evaluating and validating numerical weather models.

     
    more » « less