skip to main content


Search for: All records

Award ID contains: 1664162

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Scientific workflows drive most modern large-scale science breakthroughs by allowing scientists to define their computations as a set of jobs executed in a given order based on their data dependencies. Workflow management systems (WMSs) have become key to automating scientific workflows-executing computational jobs and orchestrating data transfers between those jobs running on complex high-performance computing (HPC) platforms. Traditionally, WMSs use files to communicate between jobs: a job writes out files that are read by other jobs. However, HPC machines face a growing gap between their storage and compute capabilities. To address that concern, the scientific community has adopted a new approach called in situ, which bypasses costly parallel filesystem I/O operations with faster in-memory or in-network communications. When using in situ approaches, communication and computations can be interleaved. In this work, we leverage the Decaf in situ dataflow framework to accelerate task-based scientific workflows managed by the Pegasus WMS, by replacing file communications with faster MPI messaging. We propose a new execution engine that uses Decaf to manage communications within a sub-workflow (i.e., set of jobs) to optimize inter-job communications. We consider two workflows in this study: (i) a synthetic workflow that benchmarks and compares file- and MPI-based communication; and (ii) a realistic bioinformatics workflow that computes mu-tational overlaps in the human genome. Experiments show that in situ communication can improve the bioinformatics workflow execution time by 22% to 30% compared with file communication. Our results motivate further opportunities and challenges for bridging traditional WMSs with in situ frameworks. 
    more » « less
  3. In this paper, we describe how we extended the Pegasus Workflow Management System to support edge-to-cloud workflows in an automated fashion. We discuss how Pegasus and HTCondor (its job scheduler) work together to enable this automation. We use HTCondor to form heterogeneous pools of compute resources and Pegasus to plan the workflow onto these resources and manage containers and data movement for executing workflows in hybrid edge-cloud environments. We then show how Pegasus can be used to evaluate the execution of workflows running on edge only, cloud only, and edge-cloud hybrid environments. Using the Chameleon Cloud testbed to set up and configure an edge-cloud environment, we use Pegasus to benchmark the executions of one synthetic workflow and two production workflows: CASA-Wind and the Ocean Observatories Initiative Orcasound workflow, all of which derive their data from edge devices. We present the performance impact on workflow runs of job and data placement strategies employed by Pegasus when configured to run in the above three execution environments. Results show that the synthetic workflow performs best in an edge only environment, while the CASA - Wind and Orcasound workflows see significant improvements in overall makespan when run in a cloud only environment. The results demonstrate that Pegasus can be used to automate edge-to-cloud science workflows and the workflow provenance data collection capabilities of the Pegasus monitoring daemon enable computer scientists to conduct edge-to-cloud research. 
    more » « less
  4. Scientific breakthroughs in biomolecular methods and improvements in hardware technology have shifted from a long-running simulation to a large set of shorter simulations running simultaneously, called an ensemble. In an ensemble, simulations are usually coupled with analyses of data produced by the simulations. In situ methods can be used to analyze large volumes of data generated by scientific simulations at runtime (i.e., simulations and analyses are performed concurrently). In this work, we study the execution of ensemble-based simulations paired with in situ analyses using in-memory staging methods. Using an ensemble of molecular dynamics in situ workflows with multiple simulations and analyses, we first show that collecting traditional metrics such as makespan, instructions per cycle, memory usage, or cache miss ratio is not sufficient to characterize complex behaviors of ensembles. We propose a method to evaluate the performance of ensembles of workflows that captures multiple resource usage aspects: resource efficiency, resource allocation, and resource provisioning. Experimental results demonstrate that the proposed method can effectively distinguish the performance of different component placements in an ensemble with up to 32 ensemble members. By evaluating different co-location scenarios, our proposed performance indicators demonstrate benefits of co-locating simulation and coupled analyses within a compute node. 
    more » « less
  5. null (Ed.)