Recent progress on stretchable, tough dual-dynamic polymer single networks (SN) and interpenetrated networks (IPN) has broadened the potential applications of dynamic polymers. However, the impact of macromolecular structure on the material mechanics remains poorly understood. Here, rapidly exchanging hydrogen bonds and thermoresponsive Diels–Alder bonds were included into molecularly engineered interpenetrated network materials. RAFT polymerization was used to make well-defined polymers with control over macromolecular architecture. The IPN materials were assessed by gel permeation chromatography, differential scanning calorimetry, tensile testing and rheology. The mechanical properties of these IPN materials can be tuned by varying the crosslinker content and chain length. All materials are elastic and have dynamic behavior at both ambient temperature and elevated temperature (90 °C), owing to the presence of the dual dynamic noncovalent and covalent bonds. 100% self-healing recovery was achieved and a maximum stress level of up to 6 MPa was obtained. The data suggested the material's healing properties are inversely proportional to the content of the crosslinker or the degree of polymerization at both room and elevated temperature. The thermoresponsive crosslinker restricted deformation to some extent in an ambient environment but gave excellent malleability upon heating. The underlying mechanism was explored by the computational simulations. Furthermore, a single network material with the same crosslinker content and degree of polymerization as the IPN was made. The SN was substantially weaker than the comparable IPN material. 
                        more » 
                        « less   
                    
                            
                            Thermoresponsive, Recyclable, Conductive, and Healable Polymer Nanocomposites with Three Distinct Dynamic Bonds
                        
                    
    
            Integration of multiple types of dynamic linkages into one polymer network is challenging and not well understood especially in the design and fabrication of dynamic polymer nanocomposites (DPNs). In this contribution, we present facile methods for synthesizing flexible, healable, conductive, and recyclable thermoresponsive DPNs using three dynamic chemistries playing distinct roles. Dynamic hydrogen bonds account for material flexibility and recycling character. Thiol-Michael exchange accounts for thermoresponsive properties. Diels–Alder reaction leads to covalent bonding between polymer matrix and nanocomposite. Overall, the presence of multiple types of orthogonal dynamic bonds provided a solution to the trade-off between enhanced mechanical performance and material elongation in DPNs. Efficient reinforcement was achieved using <1 wt % multiwalled carbon nanotubes as nanocomposite. Resulting DPNs showed excellent healability with over 3 MPa increase in stress compared to unreinforced materials. Due to multiple responsive dynamic linkages, >90% stress–relaxation was observed with self-healing achieved within 1 h of healing time. Increased mechanical strength, electrical conductivity, and reprocessability were achieved all while maintaining material flexibility and extensibility, hence highlighting the strong promise of these DPNs in the rapidly growing fields of flexible compliant electrodes and strain sensors. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10355299
- Date Published:
- Journal Name:
- ACS Applied Polymer Materials
- ISSN:
- 2637-6105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)A one pot synthesis is applied to control the chain structure and architecture of multiply dynamic polymers, enabling fine tuning of materials properties by choice of polymer chain length or crosslink density. Macromolecules containing both non-covalent linkers based on quadruple hydrogen-bonded 2-(((6-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)hexyl)carbamoyl)oxy)ethyl methacrylate (UPyMA), and thermoresponsive dynamic covalent furan–maleimide based Diels–Alder linkers are explored. The primary polymer's architecture was controlled by reversible addition-fragmentation chain transfer (RAFT) polymerization, with the dynamic non-covalent (UPyMA) and dynamic covalent furfuryl methacrylate (FMA) units incorporated into the same backbone. The materials are crosslinked, taking advantage of the “click” chemistry properties of the furan–maleimide reaction. The polymer materials showed stimulus-responsive thermomechanical properties with a decrosslinking temperature increasing with the polymer's primary chain length and crosslink density. The polymers had good thermally promoted self-healing properties due to the dynamic covalent Diels–Alder bonds. Besides, the materials had excellent stress relaxation characteristics induced by the exchange of the hydrogen bonds in UPyMA units.more » « less
- 
            null (Ed.)Interpenetrating networks (IPN) comprise two or more networks which are woven but not covalently bonded to each other. This is in contrast to simple, or single Networks (SN), which contain only one network that is covalently crosslinked. This study develops SNs and IPNs using 2-hydroxyethyl acrylate as the monomer and (2-((1-(2-(acryloyloxy)ethyl)-2,5-dioxopyrrolidin-3-yl) thio)ethyl acrylate) (TMMDA) as a thermoresponsive dynamic thiol-Michael crosslinker. In the case of the IPN and SN materials the TMMDA is used as a thermoresponsive linker in each network, since TMMDA undergoes dynamic covalent exchange above 90 °C. In this way the SN and IPNs are kinetically trapped in their as synthesized structures until exposed to thermal stimulus. The focus of this study is to investigate how dynamic bond exchange can modulate material properties, after the material has been synthesized using the SN and IPN materials as model systems. The dynamic nature of the thiol-Michael crosslinker allows the transition of IPNs into SN like structures above 90 °C resulting in similar polymer architecture in both SN and IPN. Surprisingly, upon heating the SN materials also changed their mechanical properties, upon activation of the dynamic thiol-Michael bonds. This enhancement is proposed to occur by thermally activating the thiol-Michael bonds and reducing the number of floppy loops at higher temperature.more » « less
- 
            Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or non- covalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels crosslinked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective crosslink density. Furthermore, these materials are found to exhibit self-healing and strain- memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester crosslinks, inter-chain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain- stiffening. The multi-responsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications.more » « less
- 
            CO2-induced dynamic covalent polymer networks (DCPNs) have received significant attention due to their capability of sequestering CO2 to remodel material properties. Despite the promising success of carbon sequestration in the polymer, the mechanistic understanding of the CO2-induced polymer network is still at the very beginning. A theoretical framework to understand the CO2-induced formation of bulk networks and healing of interfacial cracks of DCPNs has not been established. Here, we build up a polymer-network-based theoretical model system that can mechanistically explain the constitutive behavior and crack healing of CO2-induced DCPNs. We assume that the DCPN consists of interpenetrating networks crosslinked by CO2-induced dynamic bonds which follow a force-dependent chemical kinetics. During the healing process, we consider the CO2 molecules diffuse from the surface to the crack interface to reform the polymer network for interfacial repair. Our theoretical framework can calculate the stress-strain behaviors of both original and healed DCPNs. We demonstrate that the theoretically calculated stress-strain responses of the original DCPNs across various CO2 concentrations, as well as those of healed DCPNs under different CO2 concentrations, consistently match the documented experimental results. We expect our model to become an invaluable tool for innovating, designing, understanding, and optimizing CO2-induced DCPNs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    