skip to main content

Title: Investigation of ReRAM Variability on Flow-Based Edge Detection Computing Using HfO 2 -Based ReRAM Arrays
Authors:
; ; ; ; ; ; ;
Award ID(s):
1823015
Publication Date:
NSF-PAR ID:
10355312
Journal Name:
IEEE Transactions on Circuits and Systems I: Regular Papers
Volume:
68
Issue:
7
Page Range or eLocation-ID:
2900 to 2910
ISSN:
1549-8328
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimentalmore »results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance.« less
  2. The increasingly central role of speech based human computer interaction necessitates on-device, low-latency, low-power, high-accuracy key word spotting (KWS). State-of-the-art accuracies on speech-related tasks have been achieved by long short-term memory (LSTM) neural network (NN) models. Such models are typically computationally intensive because of their heavy use of Matrix vector multiplication (MVM) operations. Compute-in-Memory (CIM) architectures, while well suited to MVM operations, have not seen widespread adoption for LSTMs. In this paper we adapt resistive random access memory based CIM architectures for KWS using LSTMs. We find that a hybrid system composed of CIM cores and digital cores achieves 90% test accuracy on the google speech data set at the cost of 25 uJ/decision. Our optimized architecture uses 5-bit inputs, and analog weights to produce 6-bit outputs. All digital computation are performed with 8-bit precision leading to a 3.7× improvement in computational efficiency compared to equivalent digital systems at that accuracy.