skip to main content

Title: Spatially resolved star formation and fuelling in galaxy interactions
ABSTRACT We investigate the spatial structure and evolution of star formation and the interstellar medium (ISM) in interacting galaxies. We use an extensive suite of parsec-scale galaxy-merger simulations (stellar mass ratio = 2.5:1), which employs the ‘Feedback In Realistic Environments-2’ model (fire-2). This framework resolves star formation, feedback processes, and the multiphase structure of the ISM. We focus on the galaxy-pair stages of interaction. We find that close encounters substantially augment cool (H i) and cold-dense (H2) gas budgets, elevating the formation of new stars as a result. This enhancement is centrally concentrated for the secondary galaxy, and more radially extended for the primary. This behaviour is weakly dependent on orbital geometry. We also find that galaxies with elevated global star formation rate (SFR) experience intense nuclear SFR enhancement, driven by high levels of either star formation efficiency (SFE) or available cold-dense gas fuel. Galaxies with suppressed global SFR also contain a nuclear cold-dense gas reservoir, but low SFE levels diminish SFR in the central region. Concretely, in the majority of cases, SFR enhancement in the central kiloparsec is fuel-driven (55 per cent for the secondary, 71 per cent for the primary) – while central SFR suppression is efficiency-driven (91 per cent for the secondary, 97 per cent for the primary). Our numerical predictions underscore the need of substantially larger, and/or merger-dedicated, spatially resolved galaxy surveys – capable of examining vast and diverse samples of interacting systems – coupled with multiwavelength campaigns aimed to capture their internal ISM structure.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
3113 to 3133
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Galaxy mergers are known to trigger both extended and central star formation. However, what remains to be understood is whether this triggered star formation is facilitated by enhanced star formation efficiencies (SFEs), or an abundance of molecular gas fuel. This work presents spatially resolved measurements of CO emission collected with the Atacama Large Millimetre Array (ALMA) for 20 merging galaxies (either pairs or post-mergers) selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Eleven additional merging galaxies are selected from the ALMA MaNGA QUEnching and STar formation (ALMaQUEST) survey, resulting in a set of 31 mergers at various stages of interaction and covering a broad range of star formation rates (SFRs). We investigate galaxy-to-galaxy variations in the resolved Kennicutt–Schmidt relation, (rKS: $\Sigma _{\textrm {H}_2}$ versus ΣSFR), the resolved molecular gas main sequence (rMGMS: Σ⋆ versus $\Sigma _{\textrm {H}_2}$), and the resolved star-forming main sequence (rSFMS: Σ⋆ versus ΣSFR). We quantify offsets from these resolved relations to determine if SFR, molecular gas fraction, or/and SFE is/are enhanced in different regions of an individual galaxy. By comparing offsets in all three parameters, we can discern whether gas fraction or SFE powers an enhanced ΣSFR. We find that merger-induced star formation can be driven by a variety of mechanisms, both within a galaxy and between different mergers, regardless of interaction stage.

    more » « less

    We present an analysis of spatially resolved gas-phase metallicity relations in five dwarf galaxies ($\rm \mathit{M}_{halo} \approx 10^{11}\, {\rm M}_\odot$, $\rm \mathit{M}_\star \approx 10^{8.8}{-}10^{9.6}\, {\rm M}_\odot$) from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, which include an explicit model for sub-grid turbulent mixing of metals in gas, near z ≈ 0, over a period of 1.4 Gyr, and compare our findings with observations. While these dwarf galaxies represent a diverse sample, we find that all simulated galaxies match the observed mass–metallicity (MZR) and mass–metallicity gradient (MZGR) relations. We note that in all five galaxies, the metallicities are effectively identical between phases of the interstellar medium (ISM), with 95 ${{\ \rm per\ cent}}$ of the gas being within ±0.1 dex between the cold and dense gas (T < 500 K and nH > 1 cm−3), ionized gas (near the H αT ≈ 104 K ridge-line), and nebular regions (ionized gas where the 10 Myr-averaged star formation rate is non-zero). We find that most of the scatter in relative metallicity between cold dense gas and ionized gas/nebular regions can be attributed to either local starburst events or metal-poor inflows. We also note the presence of a major merger in one of our galaxies, m11e, with a substantial impact on the metallicity distribution in the spatially resolved map, showing two strong metallicity peaks and triggering a starburst in the main galaxy.

    more » « less

    Supermassive black holes require a reservoir of cold gas at the centre of their host galaxy in order to accrete and shine as active galactic nuclei (AGN). Major mergers have the ability to drive gas rapidly inwards, but observations trying to link mergers with AGN have found mixed results due to the difficulty of consistently identifying galaxy mergers in surveys. This study applies deep learning to this problem, using convolutional neural networks trained to identify simulated post-merger galaxies from survey-realistic imaging. This provides a fast and repeatable alternative to human visual inspection. Using this tool, we examine a sample of ∼8500 Seyfert 2 galaxies ($L[\mathrm{O\, {\small III}}] \sim 10^{38.5 - 42}$ erg s−1) at z < 0.3 in the Sloan Digital Sky Survey and find a merger fraction of $2.19_{-0.17}^{+0.21}$ per cent compared with inactive control galaxies, in which we find a merger fraction of $2.96_{-0.20}^{+0.26}$ per cent, indicating an overall lack of mergers among AGN hosts compared with controls. However, matching the controls to the AGN hosts in stellar mass and star formation rate reveals that AGN hosts in the star-forming blue cloud exhibit a ∼2 × merger enhancement over controls, while those in the quiescent red sequence have significantly lower relative merger fractions, leading to the observed overall deficit due to the differing M*–SFR distributions. We conclude that while mergers are not the dominant trigger of all low-luminosity, obscured AGN activity in the nearby Universe, they are more important to AGN fuelling in galaxies with higher cold gas mass fractions as traced through star formation.

    more » « less
  4. The complex physical, kinematic, and chemical properties of galaxy centres make them interesting environments to examine with molecular line emission. We present new 2 − 4″ (∼75 − 150 pc at 7.7 Mpc) observations at 2 and 3 mm covering the central 50″ (∼1.9 kpc) of the nearby double-barred spiral galaxy NGC 6946 obtained with the IRAM Plateau de Bure Interferometer. We detect spectral lines from ten molecules: CO, HCN, HCO + , HNC, CS, HC 3 N, N 2 H + , C 2 H, CH 3 OH, and H 2 CO. We complemented these with published 1 mm CO observations and 33 GHz continuum observations to explore the star formation rate surface density Σ SFR on 150 pc scales. In this paper, we analyse regions associated with the inner bar of NGC 6946 – the nuclear region (NUC), the northern (NBE), and southern inner bar end (SBE) and we focus on short-spacing corrected bulk (CO) and dense gas tracers (HCN, HCO + , and HNC). We find that HCO + correlates best with Σ SFR , but the dense gas fraction ( f dense ) and star formation efficiency of the dense gas (SFE dense ) fits show different behaviours than expected from large-scale disc observations. The SBE has a higher Σ SFR , f dense , and shocked gas fraction than the NBE. We examine line ratio diagnostics and find a higher CO(2−1)/CO(1−0) ratio towards NBE than for the NUC. Moreover, comparison with existing extragalactic datasets suggests that using the HCN/HNC ratio to probe kinetic temperatures is not suitable on kiloparsec and sub-kiloparsec scales in extragalactic regions. Lastly, our study shows that the HCO + /HCN ratio might not be a unique indicator to diagnose AGN activity in galaxies. 
    more » « less

    We present a CO(3−2) study of four systems composed of six (ultra) luminous infrared galaxies (U/LIRGs), located at 0.28 <z < 0.44, that straddle the transition region between regular star-forming galaxies and starbursts. These galaxies benefit from previous multiwavelength analysis allowing in depth exploration of an understudied population of U/LIRGs at a time when the universe is experiencing a rapid decline in star formation rate density. We detect CO(3−2) emission in four targets and these galaxies fall between the loci of regular star-forming galaxies and starbursts on the Kennicutt–Schmidtt relation. Compared to low luminosity LIRGs and high luminosity ULIRGs at similar redshifts, we find they all have similar molecular gas budgets with the difference in their star formation rates (SFR) driven by the star formation efficiency (SFE). This suggests that at these redshifts large molecular gas reservoirs must coincide with an increased SFE to transition a galaxy into the starburst regime. We studied the structure and kinematics and found our four detections are either interacting or have disturbed morphology which may be driving the SFE. One of the CO(3−2) non-detections has a strong continuum detection, and has been previously observed in H α, suggesting an unusual interstellar medium for a ULIRG. We conclude that our sample of transitioning U/LIRGs fill the gap between regular star-forming galaxies and starbursts, suggest a continuous change in SFE between these two populations and the increased SFE may be driven by morphology and differing stages of interaction.

    more » « less