skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially resolved star formation and fuelling in galaxy interactions
ABSTRACT We investigate the spatial structure and evolution of star formation and the interstellar medium (ISM) in interacting galaxies. We use an extensive suite of parsec-scale galaxy-merger simulations (stellar mass ratio = 2.5:1), which employs the ‘Feedback In Realistic Environments-2’ model (fire-2). This framework resolves star formation, feedback processes, and the multiphase structure of the ISM. We focus on the galaxy-pair stages of interaction. We find that close encounters substantially augment cool (H i) and cold-dense (H2) gas budgets, elevating the formation of new stars as a result. This enhancement is centrally concentrated for the secondary galaxy, and more radially extended for the primary. This behaviour is weakly dependent on orbital geometry. We also find that galaxies with elevated global star formation rate (SFR) experience intense nuclear SFR enhancement, driven by high levels of either star formation efficiency (SFE) or available cold-dense gas fuel. Galaxies with suppressed global SFR also contain a nuclear cold-dense gas reservoir, but low SFE levels diminish SFR in the central region. Concretely, in the majority of cases, SFR enhancement in the central kiloparsec is fuel-driven (55 per cent for the secondary, 71 per cent for the primary) – while central SFR suppression is efficiency-driven (91 per cent for the secondary, 97 per cent for the primary). Our numerical predictions underscore the need of substantially larger, and/or merger-dedicated, spatially resolved galaxy surveys – capable of examining vast and diverse samples of interacting systems – coupled with multiwavelength campaigns aimed to capture their internal ISM structure.  more » « less
Award ID(s):
2108318
PAR ID:
10355352
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3113 to 3133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations and simulations have demonstrated that star formation in galaxies must be actively suppressed to prevent the formation of overly massive galaxies. Galactic outflows driven by stellar feedback or supermassive black hole accretion are often invoked to regulate the amount of cold molecular gas available for future star formation but may not be the only relevant quenching processes in all galaxies. We present the discovery of vast molecular tidal features extending up to 64 kpc outside of a massivez= 0.646 post-starburst galaxy that recently concluded its primary star-forming episode. The tidal tails contain (1.2 ± 0.1) × 1010Mof molecular gas, 47% ± 5% of the total cold gas reservoir of the system. Both the scale and magnitude of the molecular tidal features are unprecedented compared to all known nearby or high-redshift merging systems. We infer that the cold gas was stripped from the host galaxies during the merger, which is most likely responsible for triggering the initial burst phase and the subsequent suppression of star formation. While only a single example, this result shows that galaxy mergers can regulate the cold gas contents in distant galaxies by directly removing a large fraction of the molecular gas fuel, and plausibly suppress star formation directly, a qualitatively different physical mechanism than feedback-driven outflows. 
    more » « less
  2. ABSTRACT We present an analysis of spatially resolved gas-phase metallicity relations in five dwarf galaxies ($$\rm \mathit{M}_{halo} \approx 10^{11}\, {\rm M}_\odot$$, $$\rm \mathit{M}_\star \approx 10^{8.8}{-}10^{9.6}\, {\rm M}_\odot$$) from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, which include an explicit model for sub-grid turbulent mixing of metals in gas, near z ≈ 0, over a period of 1.4 Gyr, and compare our findings with observations. While these dwarf galaxies represent a diverse sample, we find that all simulated galaxies match the observed mass–metallicity (MZR) and mass–metallicity gradient (MZGR) relations. We note that in all five galaxies, the metallicities are effectively identical between phases of the interstellar medium (ISM), with 95 $${{\ \rm per\ cent}}$$ of the gas being within ±0.1 dex between the cold and dense gas (T < 500 K and nH > 1 cm−3), ionized gas (near the H αT ≈ 104 K ridge-line), and nebular regions (ionized gas where the 10 Myr-averaged star formation rate is non-zero). We find that most of the scatter in relative metallicity between cold dense gas and ionized gas/nebular regions can be attributed to either local starburst events or metal-poor inflows. We also note the presence of a major merger in one of our galaxies, m11e, with a substantial impact on the metallicity distribution in the spatially resolved map, showing two strong metallicity peaks and triggering a starburst in the main galaxy. 
    more » « less
  3. Context.Feedback from stars in the form of radiation, stellar winds, and supernovae is crucial to regulating the star formation activity of galaxies. Dwarf galaxies are especially susceptible to these processes, making them an ideal test bed for studying the effects of stellar feedback in detail. Recent numerical models have aimed to resolve the interstellar medium (ISM) in dwarf galaxies with a very high resolution of several solar masses. However, when it comes to modeling the radiative feedback from stars, many models opt for simplified approaches instead of explicitly solving radiative transfer (RT) because of the computational complexity involved. Aims.We introduce the Realistic ISM modeling in Galaxy Evolution and Lifecycles (RIGEL) model, a novel framework to self-consistently model the effects of stellar feedback in the multiphase ISM of dwarf galaxies with explicit RT on a star-by-star basis. Methods.The RIGEL model integrates detailed implementations of feedback from individual massive stars into the state-of-the-art radiation-hydrodynamics code,AREPO-RT. It forms individual massive stars from the resolved multiphase ISM by sampling the initial mass function and tracks their evolution individually. The lifetimes, photon production rates, mass-loss rates, and wind velocities of these stars are determined by their initial masses and metallicities based on a library that incorporates a variety of stellar models. The RT equations are solved explicitly in seven spectral bins accounting for the infrared to He IIionizing bands, using a moment-base scheme with the M1 closure relation. The thermochemistry model tracks the nonequilibrium H, He chemistry as well as the equilibrium abundance of C I, C II, O I, O II, and CO in the irradiated ISM to capture the thermodynamics of all ISM phases, from cold molecular gas to hot ionized gas. Results.We evaluated the performance of the RIGEL model using 1 Mresolution simulations of isolated dwarf galaxies. We found that the star formation rate (SFR) and interstellar radiation field (ISRF) show strong positive correlations with the metallicity of the galaxy. Photoionization and photoheating can reduce the SFR by an order of magnitude by removing the available cold, dense gas fuel for star formation. The presence of ISRF also significantly changes the thermal structure of the ISM. Radiative feedback occurs immediately after the birth of massive stars and rapidly disperses the molecular clouds within 1 Myr. As a consequence, radiative feedback reduces the age spread of star clusters to less than 2 Myr, prohibits the formation of massive star clusters, and shapes the cluster initial mass function to a steep power-law form with a slope of ∼ − 2. The mass-loading factor (measured atz = 1 kpc) of the fiducial galaxy has a median ofηM ∼ 50, while turning off radiative feedback reduces this factor by an order of magnitude. Conclusions.We demonstrate that RIGEL effectively captures the nonlinear coupling of early radiative feedback and supernova feedback in the multiphase ISM of dwarf galaxies. This novel framework enables the utilization of a comprehensive stellar feedback and ISM model in cosmological simulations of dwarf galaxies and various galactic environments spanning a wide dynamic range in both space and time. 
    more » « less
  4. ABSTRACT Motivated by the early excess of bright galaxies seen by JWST, we run zoom-in cosmological simulations of a massive galaxy at Cosmic Dawn, in a halo of $$10^{11} {\rm M}_\odot$$ at $z = 9$, using the hydro-gravitational code ramses at an effective resolution $$\sim 10~{\rm pc}$$. We investigate physical mechanisms that enhance the star formation efficiencies (SFEs) at the high gas densities of the star-forming regions in this galaxy ($$\sim 3\times 10^3~{\rm cm^{-3}}$$, $$\sim 10^4~{\rm M}_\odot \,{\rm pc^{-2}}$$). Our fiducial star formation recipe uses a physically motivated, turbulence-based, multi-freefall model, avoiding ad hoc extrapolation from lower redshifts. By $z = 9$, our simulated galaxy is a clumpy, thick, rotating disc with a high stellar mass $$\sim 3\times 10^9~{\rm M}_\odot$$ and high star formation rate $$\sim 50~{\rm M}_\odot \,{\rm yr^{-1}}$$. The high gas density makes supernova (SN) feedback less efficient, producing a high local SFE $$\gtrsim 10~{{\ \rm per\ cent}}$$. The global SFE is set by feedback-driven outflows and only weakly correlated with the local SFE. Photoionization heating makes SN feedback more efficient, but the integrated SFE always remains high. Intense accretion at Cosmic Dawn seeds turbulence that reduces local SFE, but this only weakly affects the global SFE. The star formation histories of our simulated galaxies are similar to observed massive galaxies at Cosmic Dawn, despite our limited resolution. We set the stage for future simulations which treat radiation self-consistently and use a higher effective resolution $$\sim 1~{\rm pc}$$ that captures the physics of star-forming clouds. 
    more » « less
  5. The complex physical, kinematic, and chemical properties of galaxy centres make them interesting environments to examine with molecular line emission. We present new 2 − 4″ (∼75 − 150 pc at 7.7 Mpc) observations at 2 and 3 mm covering the central 50″ (∼1.9 kpc) of the nearby double-barred spiral galaxy NGC 6946 obtained with the IRAM Plateau de Bure Interferometer. We detect spectral lines from ten molecules: CO, HCN, HCO + , HNC, CS, HC 3 N, N 2 H + , C 2 H, CH 3 OH, and H 2 CO. We complemented these with published 1 mm CO observations and 33 GHz continuum observations to explore the star formation rate surface density Σ SFR on 150 pc scales. In this paper, we analyse regions associated with the inner bar of NGC 6946 – the nuclear region (NUC), the northern (NBE), and southern inner bar end (SBE) and we focus on short-spacing corrected bulk (CO) and dense gas tracers (HCN, HCO + , and HNC). We find that HCO + correlates best with Σ SFR , but the dense gas fraction ( f dense ) and star formation efficiency of the dense gas (SFE dense ) fits show different behaviours than expected from large-scale disc observations. The SBE has a higher Σ SFR , f dense , and shocked gas fraction than the NBE. We examine line ratio diagnostics and find a higher CO(2−1)/CO(1−0) ratio towards NBE than for the NUC. Moreover, comparison with existing extragalactic datasets suggests that using the HCN/HNC ratio to probe kinetic temperatures is not suitable on kiloparsec and sub-kiloparsec scales in extragalactic regions. Lastly, our study shows that the HCO + /HCN ratio might not be a unique indicator to diagnose AGN activity in galaxies. 
    more » « less