skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A consistent reduced-speed-of-light formulation of cosmic ray transport valid in weak- and strong-scattering regimes
ABSTRACT We derive a consistent set of moment equations for cosmic ray (CR)-magnetohydrodynamics, assuming a gyrotropic distribution function (DF). Unlike previous efforts, we derive a closure, akin to the M1 closure in radiation hydrodynamics (RHD), that is valid in both the nearly isotropic DF and/or strong-scattering regimes, and the arbitrarily anisotropic DF or free-streaming regimes, as well as allowing for anisotropic scattering and transport/magnetic field structure. We present the appropriate two-moment closure and equations for various choices of evolved variables, including the CR phase space DF f, number density n, total energy e, kinetic energy ϵ, and their fluxes or higher moments, and the appropriate coupling terms to the gas. We show that this naturally includes and generalizes a variety of terms including convection/fluid motion, anisotropic CR pressure, streaming, diffusion, gyro-resonant/streaming losses, and re-acceleration. We discuss how this extends previous treatments of CR transport including diffusion and moment methods and popular forms of the Fokker–Planck equation, as well as how this differs from the analogous M1-RHD equations. We also present two different methods for incorporating a reduced speed of light (RSOL) to reduce time-step limitations: In both, we carefully address where the RSOL (versus true c) must appear for the correct behaviour to be recovered in all interesting limits, and show how current implementations of CRs with an RSOL neglect some additional terms.  more » « less
Award ID(s):
2108318 1911233
PAR ID:
10355355
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3779 to 3797
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum angular moment transport schemes are an important avenue toward describing neutrino flavor mixing phenomena in dense astrophysical environments such as supernovae and merging neutron stars. Successful implementation will require new closure relations that go beyond those used in classical transport. In this paper, we derive the first analytic expression for a quantum M1 closure, valid in the limit of small flavor coherence, based on the maximum entropy principle. We verify that the resulting closure relation has the appropriate limits and characteristic speeds in the diffusive and free-streaming regimes. We then use this new closure in a moment linear stability analysis to search for fast flavor instabilities in a binary neutron star merger simulation and find better results as compared with previously designed, , semiclassical closures. Published by the American Physical Society2025 
    more » « less
  2. ABSTRACT A popular numerical method to model the dynamics of a ‘full spectrum’ of cosmic rays (CRs), also applicable to radiation/neutrino hydrodynamics, is to discretize the spectrum at each location/cell as a piecewise power law in ‘bins’ of momentum (or frequency) space. This gives rise to a pair of conserved quantities (e.g. CR number and energy) that are exchanged between cells or bins, which in turn give the update to the normalization and slope of the spectrum in each bin. While these methods can be evolved exactly in momentum-space (e.g. considering injection, absorption, continuous losses/gains), numerical challenges arise dealing with spatial fluxes, if the scattering rates depend on momentum. This has often been treated either by neglecting variation of those rates ‘within the bin,’ or sacrificing conservation – introducing significant errors. Here, we derive a rigorous treatment of these terms, and show that the variation within the bin can be accounted for accurately with a simple set of scalar correction coefficients that can be written entirely in terms of other, explicitly evolved ‘bin-integrated’ quantities. This eliminates the relevant errors without added computational cost, has no effect on the numerical stability of the method, and retains manifest conservation. We derive correction terms both for methods that explicitly integrate flux variables (e.g. two-moment or M1-like) methods, as well as single-moment (advection-diffusion, FLD-like) methods, and approximate corrections valid in various limits. 
    more » « less
  3. In this paper, we take a data-driven approach and apply machine learning to the moment closure problem for the radiative transfer equation in slab geometry. Instead of learning the unclosed high order moment, we propose to directly learn the gradient of the high order moment using neural networks. This new approach is consistent with the exact closure we derive for the free streaming limit and also provides a natural output normalization. A variety of benchmark tests, including the variable scattering problem, the Gaussian source problem with both periodic and reflecting boundaries, and the two-material problem, show both good accuracy and generalizability of our machine learning closure model. 
    more » « less
  4. Abstract We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆ starburst, and L⋆ galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ-ray emission from nearby and starburst galaxies. We reproduce the γ-ray observations of dwarf and L⋆ galaxies with constant isotropic diffusion coefficient κ ∼ 3 × 1029 cm2 s−1. Advection-only and streaming-only models produce order-of-magnitude too large γ-ray luminosities in dwarf and L⋆ galaxies. We show that in models that match the γ-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ-ray emissivities. Models where CRs are “trapped” in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ-ray observations. For models with constant κ that match the γ-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc. 
    more » « less
  5. A computationally efficient method for calculating the transport of neutrino flavor in simulations is to use angular moments of the neutrino one-body reduced density matrix, i.e., “quantum moments.” As with any moment-based radiation transport method, a closure is needed if the infinite tower of moment evolution equations is truncated. We derive a general parametrization of a quantum closure and the limits the parameters must satisfy in order for the closure to be physical. We then derive from multiangle calculations the evolution of the closure parameters in two test cases which we then progressively insert into a moment evolution code and show how the parameters affect the moment results until the full multiangle results are reproduced. This parametrization paves the way to setting prescriptions for genuine quantum closures adapted to neutrino transport in a range of situations. Published by the American Physical Society2025 
    more » « less