skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Abstract. Bioactive trace metals are critical micronutrients for marinemicroorganisms due to their role in mediating biological redox reactions,and complex biogeochemical processes control their distributions.Hydrothermal vents may represent an important source of metals tomicroorganisms, especially those inhabiting low-iron waters, such as in thesouthwest Pacific Ocean. Previous measurements of primordial 3Heindicate a significant hydrothermal source originating in the northeastern (NE)Lau Basin, with the plume advecting into the southwest Pacific Ocean at1500–2000 m depth (Lupton etal., 2004). Studies investigating the long-range transport of trace metalsassociated with such dispersing plumes are rare, and the biogeochemicalimpacts on local microbial physiology have not yet been described. Here wequantified dissolved metals and assessed microbial metaproteomes across atransect spanning the tropical and equatorial Pacific with a focus on thehydrothermally active NE Lau Basin and report elevated iron and manganeseconcentrations across 441 km of the southwest Pacific. The most intensesignal was detected near the Mangatolo Triple Junction (MTJ) and NortheastLau Spreading Center (NELSC), in close proximity to the previously reported3He signature. Protein content in distal-plume-influenced seawater,which was high in metals, was overall similar to background locations,though key prokaryotic proteins involved in metal and organic uptake,protein degradation, and chemoautotrophy were abundant compared to deepwaters outside of the distal plume. Our results demonstrate that tracemetals derived from the NE Lau Basin are transported over appreciabledistances into the southwest Pacific Ocean and that bioactive chemicalresources released from submarine vent systems are utilized by surroundingdeep-sea microbes, influencing both their physiology and their contributionsto ocean biogeochemical cycling.  more » « less
Award ID(s):
2023031 2048774 1031271 2123055
PAR ID:
10355356
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
18
Issue:
19
ISSN:
1726-4189
Page Range / eLocation ID:
5397 to 5422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes the concentrations of dissolved inorganic macronutrients (phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite), chlorophyll a and phaeophytin, dissolved trace metals (iron, manganese, nickel, zinc, copper), and labile dissolved nickel, as well as pH and total alkalinity measurements, from discrete depth profile samples collected on the FeOA cruise SKQ202209S on R/V Sikuliaq in the Northeast Pacific from June to July 2022. This project investigates the effects of ocean acidification on the associations between iron and organic ligands in seawater and on iron bioavailability to marine phytoplankton communities. The project used a combination of shipboard incubation experiments and depth profiles to characterize iron speciation and cycling across coastal upwelling, oligotrophic open ocean, and iron-limited subarctic oceanographic regimes in the NE Pacific. Surface seawater was incubated at pH of 8.1, 7.6, and 7.1 with natural iron and with dissolved iron amendments in order to investigate interactions between pH and iron bioavailability across the different regimes. Understanding how pH influences iron and its relationship with ligands provides important information for assessing the impacts of ocean acidification on primary production and biogeochemical processes. 
    more » « less
  2. A system of meridional ridges in the western South Pacific Ocean frame the Lau Basin and Havre Trough, and form a barrier to direct communication between the far western South Pacific basins and the interior South Pacific Ocean. The eastern side of this system comprises the Tonga and Kermadec Ridges, the location of the main deep western boundary current entering the Pacific Ocean. Observations from floats released in the Lau Basin as part of the RIDGE2000 program suggested the presence of a western boundary current along the Lau Ridge exiting into the North Fiji Basin. Those observations, together with Argo sub-surface float data and repeat hydrographic sections, confirm and expand the boundary current observations along the Lau Ridge throughout the Lau Basin and into the Havre Trough, along the Colville Ridge. The observations also reveal two previously unrecognized westward flowing jets bisecting the Lau Basin and Havre Trough. Using an extension to the classic Stommel-Arons abyssal circulation model, the predicted strength and location of these boundary currents and their bifurcation is compared with the float observations. The model provides a simplified view of the dynamics controlling the boundary current structure in the deep basins. A comparison of transport within the western boundary current derived from float data, hydrographic sections, and the idealized analytical model indicates that roughly 4 Sv (below 1,000 db) is transported northward through the Lau Basin, exiting into the North Fiji Basin. 
    more » « less
  3. Abstract Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history. 
    more » « less
  4. Fresh samples of basalts were collected by dredging from the Nanyue intraplate seamount in the Southwest sub-basin of the South China Sea (SCS). These are alkali basalts displaying right-sloping, chondrite-normalized rare earth element (REE) profiles. The investigated basalts are characterized by low Os content (60.37–85.13 ppt) and radiogenic 187Os/188Os ratios (~0.19 to 0.21). Furthermore, 40Ar/39Ar dating of the Nanyue basalts showed they formed during the Tortonian (~8.3 Ma) and, thus, are products of (Late Cenozoic) post-spreading volcanism. The Sr–Nd–Pb–Hf isotopic compositions of the Nanyue basalts indicate that their parental melts were derived from an upper mantle reservoir possessing the so-called Dupal isotopic anomaly. Semiquantitative isotopic modeling demonstrates that the isotopic compositions of the Nanyue basalts can be reproduced by mixing three components: the average Pacific midocean ridge basalt (MORB), the lower continental crust (LCC), and the average Hainan ocean island basalt (OIB). Our preferred hypothesis for the genesis of the Nanyue basalts is that their parental magmas were produced from an originally depleted mantle (DM) source that was much affected by the activity of the Hainan plume. Initially, the Hainan diapir caused a thermal perturbation in the upper mantle under the present-day Southwest sub-basin of the SCS that led to erosion of the overlying LCC. Eventually, the resultant suboceanic lithospheric mantle (SOLM) interacted with OIB-type components derived from the nearby Hainan plume. Collectively, these processes contributed crustal- and plume-type components to the upper mantle underlying the Southwest sub-basin of the SCS. This implies that the Dupal isotopic signature in the upper mantle beneath the SCS was an artifact of in situ geological processes rather than a feature inherited from a Southern Hemispheric, upper mantle source. 
    more » « less
  5. This dataset includes the concentrations of dissolved inorganic macronutrients (phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite), chlorophyll a and phaeophytin, and particulate organic nitrogen and carbon measured shipboard in samples collected from phytoplankton shipboard incubation experiments conducted on the FeOA cruise SKQ202209S on R/V Sikuliaq in the Northeast Pacific from June to July 2022. This project investigates the effects of ocean acidification on the associations between iron and organic ligands in seawater and on iron bioavailability to marine phytoplankton communities. The project used a combination of shipboard incubation experiments and depth profiles to characterize iron speciation and cycling across coastal upwelling, oligotrophic open ocean, and iron-limited subarctic oceanographic regimes in the NE Pacific. Surface seawater was incubated at pH of 8.1, 7.6, and 7.1 with natural iron and with dissolved iron amendments in order to investigate interactions between pH and iron bioavailability across the different regimes. Understanding how pH influences iron and its relationship with ligands provides important information for assessing the impacts of ocean acidification on primary production and biogeochemical processes. 
    more » « less