skip to main content

Title: Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data

Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.

more » « less
Award ID(s):
2023456 1850807 1827401 1736949
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although iron and light are understood to regulate the Southern Ocean biological carbon pump, observations have also indicated a possible role for manganese. Low concentrations in Southern Ocean surface waters suggest manganese limitation is possible, but its spatial extent remains poorly constrained and direct manganese limitation of the marine carbon cycle has been neglected by ocean models. Here, using available observations, we develop a new global biogeochemical model and find that phytoplankton in over half of the Southern Ocean cannot attain maximal growth rates because of manganese deficiency. Manganese limitation is most extensive in austral spring and depends on phytoplankton traits related to the size of photosynthetic antennae and the inhibition of manganese uptake by high zinc concentrations in Antarctic waters. Importantly, manganese limitation expands under the increased iron supply of past glacial periods, reducing the response of the biological carbon pump. Overall, these model experiments describe a mosaic of controls on Southern Ocean productivity that emerge from the interplay of light, iron, manganese and zinc, shaping the evolution of Antarctic phytoplankton since the opening of the Drake Passage.

    more » « less
  2. Abstract

    The reliability of paleoproductivity proxies must be determined before assessing the role of the oceanic carbon (C) cycle in affecting past climate changes. We compare paleoproductivity records of newly generated micropaleontological data (benthic foraminiferal accumulation rates, BFAR) to those of existing geochemical data (reactive phosphorus [reactive P] mass accumulation rates [MAR] and biological barium [bio‐Ba] MAR) for the same Paleogene‐aged sediments. Sediments are from the Atlantic (Maud Rise, Ocean Drilling Program Sites 689/690) and the Indian (Kerguelen plateau, Ocean Drilling Program Site 738) sectors of the Southern Ocean. Reactive P MAR, but not bio‐Ba MAR, correlates to varying degree with BFAR for all three sites investigated. Export productivity, delivery of organic C to the seafloor, and organic C burial calculated here using bio‐Ba MAR, BFAR, and reactive P MAR, respectively, for these sites during the Early Paleogene span 2 orders of magnitude (~0.01 to 1 g C·cm−2·kyr−1). Differences in magnitude of reconstructed organic C fluxes are expected because different proxies record different aspects of the biological pump, and these aspects did not behave proportionally similar for all periods. Proxies studied here indicate that transfer efficiency, the fraction of exported organic matter from 100 m that reaches the deep ocean, was low for the Early Paleogene Southern Ocean, similar to today. Despite this, absolute organic carbon burial was similar or higher than today because export productivity was similar or higher. Elevated temperatures may have increased both biological production and respiration in the Early Paleogene Southern Ocean.

    more » « less
  3. Abstract

    Biological productivity in the ocean directly influences the partitioning of carbon between the atmosphere and ocean interior. Through this carbon cycle feedback, changing ocean productivity has long been hypothesized as a key pathway for modulating past atmospheric carbon dioxide levels and hence global climate. Because phytoplankton preferentially assimilate the light isotopes of carbon and the major nutrients nitrate and silicic acid, stable isotopes of carbon (C), nitrogen (N), and silicon (Si) in seawater and marine sediments can inform on ocean carbon and nutrient cycling, and by extension the relationship with biological productivity and global climate. Here, we compile water column C, N, and Si stable isotopes from GEOTRACES‐era data in four key ocean regions to review geochemical proxies of oceanic carbon and nutrient cycling based on the C, N, and Si isotopic composition of marine sediments. External sources and sinks as well as internal cycling (including assimilation, particulate matter export, and regeneration) are discussed as likely drivers of observed C, N, and Si isotope distributions in the ocean. The potential for C, N, and Si isotope measurements in sedimentary archives to record aspects of past ocean C and nutrient cycling is evaluated, along with key uncertainties and limitations associated with each proxy. Constraints on ocean C and nutrient cycling during late Quaternary glacial‐interglacial cycles and over the Cenozoic are examined. This review highlights opportunities for future research using multielement stable isotope proxy applications and emphasizes the importance of such applications to reconstructing past changes in the oceans and climate system.

    more » « less
  4. Abstract

    Roadsides are targeted for restoration of pollinator‐friendly plants. Yet, roads are sources of macronutrient, micronutrient and heavy metal pollution that may contaminate roadside plants. Adjacent landscape features such as railroads and agriculture provide additional macronutrient and heavy metal pollution that may exacerbate traffic effects. However, we lack perspective on how roads combine with rural landscape features to influence nutrition of roadside plants, which could have implications for pollinator health.

    We surveyed roadsides across Minnesota, USA and measured foliar levels of dietary macronutrients (nitrogen, phosphorous and potassium), a micronutrient (sodium) and metals (iron, zinc, copper, chromium, nickel, lead, aluminium and cadmium) in six abundant roadside forb species used by insect pollinators:Asclepias syriaca,Dalea purpurea,Monarda fistulosa,Ratibida pinnata,Solidagospp. andTrifolium pratense. We aimed to determine (1) how road variables (traffic volume and distance from road) combine with adjacent land use (railroad and agriculture) to influence element content of roadside forbs and (2) whether some forb species show consistent differences in their accumulation of potentially toxic heavy metals, which could inform selection of species to plant along roadsides.

    We found that foliar concentrations of nine elements increased with greater traffic volume (nitrogen, phosphorous, iron, zinc, copper, chromium, nickel, lead and aluminium), and concentrations of six elements declined with distance from the road (nitrogen, phosphorous, potassium, iron, zinc and copper). Leaves collected adjacent to railroad had less phosphorous, potassium, iron, nickel and aluminium than leaves collected from sites not adjacent to railroad. Additionally, leaves collected from sites adjacent to agriculture had lower copper levels than leaves from sites without adjacent agriculture. We found no evidence that particular ford species along roadsides consistently rank higher than other species in their accumulation of heavy metals.

    Our results show that traffic alters more elements in roadside plants than does adjacent landscape context, alleviating concerns that landscape features exacerbate pollutant levels in roadside pollinator habitat. However, nutrient contamination of most roadside plants is unlikely to reach toxic levels for insect pollinators. This work is consistent with the positive conservation potential of low to moderate traffic roadsides for pollinators.

    more » « less
  5. Abstract

    Future environmental change may profoundly affect oceanic ecosystems in a complex way, due to the synergy between rising temperatures, reduction in mixing and upwelling due to enhanced stratification, ocean acidification, and associated biogeochemical dynamics. Changes in primary productivity, in export of organic carbon from the surface ocean, and in remineralization deeper in the water column in the so‐called “twilight zone” may substantially alter the marine biological carbon pump, thus carbon storage in the oceans. We present different proxy records commonly used for reconstructing paleoproductivity, and re‐evaluate their use for understanding dynamic change within and between different constituents of the marine biological pump during transient global warming episodes in the past. Marine pelagic barite records are a proxy for carbon export from the photic and/or mesopelagic zone, and are not positively correlated with benthic foraminiferal proxies for arrival of organic matter to the seafloor over three early Eocene periods of global warming (Ocean Drilling Program Site 1263, SE Atlantic). These two proxies reflect processes in different parts of the water column, thus different components of the biological pump. An increase in temperature‐dependent organic carbon remineralization in the water column would have caused decreased arrival of food at the seafloor, starving the benthic biota and explaining the differences between the proxies, and may have led to ocean deoxygenation. Carbon cycle modeling demonstrates the feasibility of enhanced water‐column remineralization to explain both Site 1263 records, suggesting that this mechanism amplifiespCO2increase, representing a positive feedback during hyperthermal warming.

    more » « less