- Award ID(s):
- 1926817
- PAR ID:
- 10355398
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 22
- Issue:
- 11
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 7647 to 7666
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales.more » « less
-
Abstract. Fires emit a substantial amount of non-methane organic gases (NMOGs), theatmospheric oxidation of which can contribute to ozone and secondaryparticulate matter formation. However, the abundance and reactivity of thesefire NMOGs are uncertain and historically not well constrained. In thiswork, we expand the representation of fire NMOGs in a global chemicaltransport model, GEOS-Chem. We update emission factors to Andreae (2019) andthe chemical mechanism to include recent aromatic and ethene and ethyne modelimprovements(Bateset al., 2021; Kwon et al., 2021). We expand the representation of NMOGs byadding lumped furans to the model (including their fire emission andoxidation chemistry) and by adding fire emissions of nine species alreadyincluded in the model, prioritized for their reactivity using data from the Fire Influence on Regional to Global Environments (FIREX) laboratory studies. Based on quantified emissions factors, we estimatethat our improved representation captures 72 % of emitted, identified NMOGcarbon mass and 49 % of OH reactivity from savanna and temperate forestfires, a substantial increase from the standard model (49 % of mass,28 % of OH reactivity). We evaluate fire NMOGs in our model withobservations from the Amazon Tall Tower Observatory (ATTO) in Brazil, Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and DC3 in the US, and Arctic Research of the Composition of theTroposphere from Aircraft and Satellites (ARCTAS) in boreal Canada. We show that NMOGs,including furan, are well simulated in the eastern US with someunderestimates in the western US and that adding fire emissions improves ourability to simulate ethene in boreal Canada. We estimate that fires provide15 % of annual mean simulated surface OH reactivity globally, as well as morethan 75 % over fire source regions. Over continental regions about half ofthis simulated fire reactivity comes from NMOG species. We find that furansand ethene are important globally for reactivity, while phenol is moreimportant at a local level in the boreal regions. This is the first globalestimate of the impact of fire on atmospheric reactivity.more » « less
-
Abstract A striking feature of the Earth system is that the Northern and Southern Hemispheres reflect identical amounts of sunlight. This hemispheric albedo symmetry comprises two asymmetries: The Northern Hemisphere is more reflective in clear skies, whereas the Southern Hemisphere is cloudier. Here we show that the hemispheric reflection contrast from differences in continental coverage is offset by greater reflection from the Antarctic than the Arctic, allowing the net clear-sky asymmetry to be dominated by aerosol. Climate model simulations suggest that historical anthropogenic aerosol emissions drove a large increase in the clear-sky asymmetry that would reverse in future low-emission scenarios. High-emission scenarios also show decreasing asymmetry, instead driven by declines in Northern Hemisphere ice and snow cover. Strong clear-sky hemispheric albedo asymmetry is therefore a transient feature of Earth’s climate. If all-sky symmetry is maintained, compensating cloud changes would have uncertain but important implications for Earth’s energy balance and hydrological cycle.
-
Abstract Formaldehyde (HCHO) is generated from direct urban emission sources and secondary production from the photochemical reactions of urban smog. HCHO is linked to tropospheric ozone formation, and contributes to the photochemical reactions of other components of urban smog. In this study, pollution plume intercepts during the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign were used to investigate and characterize the formation of HCHO in relation to several anthropogenic tracers. Analysis of aircraft intercepts combined with detailed chemical box modeling downwind of several cities suggests that the most important contribution to observed HCHO was primary emission. A box model analysis of a single plume suggested that secondary sources contribute to 21 ± 10% of the observed HCHO. Ratios of HCHO/CO observed in the northeast US, from Ohio to New York, ranging from 0.2% to 0.6%, are consistent with direct emissions combined with at most modest photochemical production. Analysis of the nocturnal boundary layer and residual layer from repeated vertical profiling over urban influenced areas indicate a direct HCHO emission flux of 1.3 × 1014molecules cm−2h−1. In a case study in Atlanta, GA, nighttime HCHO exhibited a ratio to CO (0.6%–1.8%) and was anti‐correlated with O3. Observations were consistent with mixing between direct HCHO emissions in urban air masses with those influenced by more rapid HCHO photochemical production. The HCHO/CO emissions ratios determined from the measured data are 2.3–15 times greater than the NEI 2017 emissions database. The largest observed HCHO/CO was 1.7%–1.8%, located near co‐generating power stations.
-
Abstract Stratospheric aerosol injection (SAI) would potentially be effective in limiting global warming and preserving large‐scale temperature patterns; however, there are still gaps in understanding the impact of SAI on wildfire risk. In this study, extreme fire weather is assessed in an Earth system model experiment that deploys SAI beginning in 2035, targeting a global temperature increase of 1.5°C above pre‐industrial levels under a moderate warming scenario. After SAI deployment, increases in extreme fire weather event frequency from climate change are dampened over much of the globe, including the Mediterranean, northeast Brazil, and eastern Europe. However, SAI has little impact over the western Amazon and northern Australia and causes larger increases in extreme fire weather frequency in west central Africa relative to the moderate emissions scenario. Variations in the impacts of warming and SAI on moisture conditions on different time scales determine the spatiotemporal differences in extreme fire weather frequency changes, and are plausibly linked to changes in synoptic‐scale circulation. This study highlights that regional and spatial heterogeneities of SAI climate effects simulated in a model are amplified when assessing wildfire risk, and that these differences must be accounted for when quantifying the possible benefit of SAI.