skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity
Abstract. Fires emit a substantial amount of non-methane organic gases (NMOGs), theatmospheric oxidation of which can contribute to ozone and secondaryparticulate matter formation. However, the abundance and reactivity of thesefire NMOGs are uncertain and historically not well constrained. In thiswork, we expand the representation of fire NMOGs in a global chemicaltransport model, GEOS-Chem. We update emission factors to Andreae (2019) andthe chemical mechanism to include recent aromatic and ethene and ethyne modelimprovements(Bateset al., 2021; Kwon et al., 2021). We expand the representation of NMOGs byadding lumped furans to the model (including their fire emission andoxidation chemistry) and by adding fire emissions of nine species alreadyincluded in the model, prioritized for their reactivity using data from the Fire Influence on Regional to Global Environments (FIREX) laboratory studies. Based on quantified emissions factors, we estimatethat our improved representation captures 72 % of emitted, identified NMOGcarbon mass and 49 % of OH reactivity from savanna and temperate forestfires, a substantial increase from the standard model (49 % of mass,28 % of OH reactivity). We evaluate fire NMOGs in our model withobservations from the Amazon Tall Tower Observatory (ATTO) in Brazil, Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and DC3 in the US, and Arctic Research of the Composition of theTroposphere from Aircraft and Satellites (ARCTAS) in boreal Canada. We show that NMOGs,including furan, are well simulated in the eastern US with someunderestimates in the western US and that adding fire emissions improves ourability to simulate ethene in boreal Canada. We estimate that fires provide15 % of annual mean simulated surface OH reactivity globally, as well as morethan 75 % over fire source regions. Over continental regions about half ofthis simulated fire reactivity comes from NMOG species. We find that furansand ethene are important globally for reactivity, while phenol is moreimportant at a local level in the boreal regions. This is the first globalestimate of the impact of fire on atmospheric reactivity.  more » « less
Award ID(s):
1936642
PAR ID:
10384036
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
18
ISSN:
1680-7324
Page Range / eLocation ID:
12093 to 12111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Agricultural and prescribed burning activities emit large amounts of trace gases and aerosols on regional to global scales. We present a compilation of emission factors (EFs) and emission ratios from the eastern portion of the Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign in 2019 in the United States, which sampled burning of crop residues and other prescribed fire fuels. FIREX‐AQ provided comprehensive chemical characterization of 53 crop residue and 22 prescribed fires. Crop residues burned at different modified combustion efficiencies (MCE), with corn residue burning at higher MCE than other fuel types. Prescribed fires burned at lower MCE (<0.90) which is typical, while grasslands burned at lower MCE (0.90) than normally observed due to moist, green, growing season fuels. Most non‐methane volatile organic compounds (NMVOCs) were significantly anticorrelated with MCE except for ethanol and NMVOCs that were measured with less certainty. We identified 23 species where crop residue fires differed by more than 50% from prescribed fires at the same MCE. Crop residue EFs were greater for species related to agricultural chemical use and fuel composition as well as oxygenated NMVOCs possibly due to the presence of metals such as potassium. Prescribed EFs were greater for monoterpenes (5×). FIREX‐AQ crop residue average EFs generally agreed with the previous agricultural fire study in the US but had large disagreements with global compilations. FIREX‐AQ observations show the importance of regionally‐specific and fuel‐specific EFs as first steps to reduce uncertainty in modeling the air quality impacts of fire emissions. 
    more » « less
  2. Abstract. We quantify future changes in wildfire burned area and carbon emissions inthe 21st century under four Shared Socioeconomic Pathways (SSPs) scenariosand two SSP5-8.5-based solar geoengineering scenarios with a target surfacetemperature defined by SSP2-4.5 – solar irradiance reduction (G6solar) andstratospheric sulfate aerosol injections (G6sulfur) – and explore themechanisms that drive solar geoengineering impacts on fires. This study isbased on fully coupled climate–chemistry simulations with simulatedoccurrence of fires (burned area and carbon emissions) using the WholeAtmosphere Community Climate Model version 6 (WACCM6) as the atmosphericcomponent of the Community Earth System Model version 2 (CESM2). Globally,total wildfire burned area is projected to increase over the 21st centuryunder scenarios without geoengineering and decrease under the twogeoengineering scenarios. By the end of the century, the two geoengineeringscenarios have lower burned area and fire carbon emissions than not onlytheir base-climate scenario SSP5-8.5 but also the targeted-climate scenarioSSP2-4.5. Geoengineering reduces wildfire occurrence by decreasing surfacetemperature and wind speed and increasing relative humidity and soil water,with the exception of boreal regions where geoengineering increases theoccurrence of wildfires due to a decrease in relative humidity and soilwater compared with the present day. This leads to a global reduction in burnedarea and fire carbon emissions by the end of the century relative to theirbase-climate scenario SSP5-8.5. However, geoengineering also yieldsreductions in precipitation compared with a warming climate, which offsetssome of the fire reduction. Overall, the impacts of the different drivingfactors are larger on burned area than fire carbon emissions. In general,the stratospheric sulfate aerosol approach has a stronger fire-reducingeffect than the solar irradiance reduction approach. 
    more » « less
  3. In this study, we focus on the effects of fuel bed representation and fire heat and smoke distribution in a coupled fire-atmosphere simulation platform for two landscape-scale fires: the 2018 Camp Fire and the 2021 Caldor Fire. The fuel bed representation in the coupled fire-atmosphere simulation platform WRF-Fire currently includes only surface fuels. Thus, we enhance the model by adding canopy fuel characteristics and heat release, for which a method to calculate the heat generated from canopy fuel consumption is developed and implemented in WRF-Fire. Furthermore, the current WRF-Fire heat and smoke distribution in the atmosphere is replaced with a heat-conserving Truncated Gaussian (TG) function and its effects are evaluated. The simulated fire perimeters of case studies are validated against semi-continuous, high-resolution fire perimeters derived from NEXRAD radar observations. Furthermore, simulated plumes of the two fire cases are compared to NEXRAD radar reflectivity observations, followed by buoyancy analysis using simulated temperature and vertical velocity fields. The results show that while the improved fuel bed and the TG heat release scheme have small effects on the simulated fire perimeters of the wind-driven Camp Fire, they affect the propagation direction of the plume-driven Caldor Fire, leading to better-matching fire perimeters with the observations. However, the improved fuel bed representation, together with the TG heat smoke release scheme, leads to a more realistic plume structure in comparison to the observations in both fires. The buoyancy analysis also depicts more realistic fire-induced temperature anomalies and atmospheric circulation when the fuel bed is improved. 
    more » « less
  4. Fires in the wildland-urban interface (WUI) are a global issue with growing importance. However, the impact of WUI fires on air quality and health is less understood compared to that of fires in wildland. We analyze WUI fire impacts on air quality and health at the global scale using a multi-scale atmospheric chemistry model—the Multi-Scale Infrastructure for Chemistry and Aerosols model (MUSICA). WUI fires have notable impacts on key air pollutants [e.g., carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3)]. The health impact of WUI fire emission is disproportionately large compared to wildland fires primarily because WUI fires are closer to human settlement. Globally, the fraction of WUI fire–caused annual premature deaths (APDs) to all fire–caused APDs is about three times of the fraction of WUI fire emissions to all fire emissions. The developed model framework can be applied to address critical needs in understanding and mitigating WUI fires and their impacts. 
    more » « less
  5. Abstract The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) experiment was a multi‐agency, inter‐disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground‐based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC‐8 and two NOAA Twin Otter aircraft. The high‐altitude NASA ER‐2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC‐8 investigated 87 smaller fires in the Southeast with remote and in‐situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels consumed and fire radiative power using orbital and suborbital remote sensing observations collected during overflights of the fires and smoke plumes and ground sampling of fuels. 
    more » « less