Deaf and Hard-of-Hearing (DHH) users face accessibility challenges during in-person and remote meetings. While emerging use of applications incorporating automatic speech recognition (ASR) is promising, more user-interface and user-experience research is needed. While co-design methods could elucidate designs for such applications, COVID-19 has interrupted in-person research. This study describes a novel methodology for conducting online co-design workshops with 18 DHH and hearing participant pairs to investigate ASR-supported mobile and videoconferencing technologies along two design dimensions: Correcting errors in ASR output and implementing notification systems for influencing speaker behaviors. Our methodological findings include an analysis of communication modalities and strategies participants used, use of an online collaborative whiteboarding tool, and how participants reconciled differences in ideas. Finally, we present guidelines for researchers interested in online DHH co-design methodologies, enabling greater geographically diversity among study participants even beyond the current pandemic. 
                        more » 
                        « less   
                    
                            
                            Deaf and hard-of-hearing users' preferences for hearing speakers' behavior during technology-mediated in-person and remote conversations
                        
                    
    
            Various technologies mediate synchronous audio-visual one-on-one communication (SAVOC) between Deaf and Hard-of-Hearing (DHH) and hearing colleagues, including automatic-captioning smartphone apps for in-person settings, or text-chat features of videoconferencing software in remote settings. Speech and non-verbal behaviors of hearing speakers, e.g. speaking too quietly, can make SAVOC difficult for DHH users, but prior work had not examined technology-mediated contexts. In an in-person study (N=20) with an automatic captioning smartphone app, variations in a hearing actor's enunciation and intonation dynamics affected DHH users' satisfaction. In a remote study (N=23) using a videoconferencing platform with text chat, variations in speech rate, voice intensity, enunciation, intonation dynamics, and eye contact led to such differences. This work contributes empirical evidence that specific behaviors of hearing speakers affect the accessibility of technology-mediated SAVOC for DHH users, providing motivation for future work on detecting or encouraging useful communication behaviors among hearing individuals. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1954284
- PAR ID:
- 10355407
- Date Published:
- Journal Name:
- Proceedings of the 18th International Web for All Conference (W4A '21)
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As remote work and learning increases in popularity, individuals, especially those with hearing impairments or who speak English as a second language, may depend on automated transcriptions to participate in business, school, entertainment, or basic communication. In this work, we investigate the automated transcription accuracy of seven popular social media and videoconferencing platforms with respect to some personal characteristics of their users, including gender, age, race, first language, speech rate, F0 frequency, and speech readability. We performed this investigation on a new corpus of 194 hours of English monologues by 846 TED talk speakers. Our results show the presence of significant bias, with transcripts less accurate for speakers that are male or non-native English speakers. We also observe differences in accuracy among platforms for different types of speakers. These results indicate that, while platforms have improved their automatic captioning, much work remains to make captions accessible for a wider variety of speakers and listeners.more » « less
- 
            People who are Deaf or Hard of Hearing (DHH) benefit from text captioning to understand audio, yet captions alone are often insufficient for the complex environment of a panel presentation, with rapid and unpredictable turn-taking among multiple speakers. It is challenging and tiring for DHH individuals to view captioned panel presentations, leading to feelings of misunderstanding and exclusion. In this work, we investigate the potential of Mixed Reality (MR) head-mounted displays for providing captioning with visual cues to indicate which person on the panel is speaking. For consistency in our experimental study, we simulate a panel presentation in virtual reality (VR) with various types of MR visual cues; in a study with 18 DHH participants, visual cues made it easier to identify speakers.more » « less
- 
            Caption text conveys salient auditory information to deaf or hard-of-hearing (DHH) viewers. However, the emotional information within the speech is not captured. We developed three emotive captioning schemas that map the output of audio-based emotion detection models to expressive caption text that can convey underlying emotions. The three schemas used typographic changes to the text, color changes, or both. Next, we designed a Unity framework to implement these schemas and used it to generate stimuli videos. In an experimental evaluation with 28 DHH viewers, we compared DHH viewers’ ability to understand emotions and their subjective judgments across the three captioning schemas. We found no significant difference in participants’ ability to understand the emotion based on the captions or their subjective preference ratings. Open-ended feedback revealed factors contributing to individual differences in preferences among the participants and challenges with automatically generated emotive captions that motivate future work.more » « less
- 
            A Dataset of Word-Complexity Judgements from Deaf and Hard-of-Hearing Adults for Text SimplificationResearch has explored the use of automatic text simplification (ATS), which consists of techniques to make text simpler to read, to provide reading assistance to Deaf and Hard-of-hearing (DHH) adults with various literacy levels. Prior work in this area has identified interest in and benefits from ATS-based reading assistance tools. However, no prior work on ATS has gathered judgements from DHH adults as to what constitutes complex text. Thus, following approaches in prior NLP work, this paper contributes new word-complexity judgements from 11 DHH adults on a dataset of 15,000 English words that had been previously annotated by L2 speakers, which we also augmented to include automatic annotations of linguistic characteristics of the words. Additionally, we conduct a supplementary analysis of the interaction effect between the linguistic characteristics of the words and the groups of annotators. This analysis highlights the importance of collecting judgements from DHH adults for training ATS systems, as it revealed statistically significant interaction effects for nearly all of the linguistic characteristics of the words.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    