Multiple abrupt warming events (“hyperthermals”) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation’s sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.
more »
« less
Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse
Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO 2 ) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO 2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter–derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse.
more »
« less
- Award ID(s):
- 1729882
- PAR ID:
- 10355645
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 19
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The end-Permian mass extinction event (∼252 Mya) is associated with one of the largest global carbon cycle perturbations in the Phanerozoic and is thought to be triggered by the Siberian Traps volcanism. Sizable carbon isotope excursions (CIEs) have been found at numerous sites around the world, suggesting massive quantities of 13 C-depleted CO 2 input into the ocean and atmosphere system. The exact magnitude and cause of the CIEs, the pace of CO 2 emission, and the total quantity of CO 2 , however, remain poorly known. Here, we quantify the CO 2 emission in an Earth system model based on new compound-specific carbon isotope records from the Finnmark Platform and an astronomically tuned age model. By quantitatively comparing the modeled surface ocean pH and boron isotope pH proxy, a massive (∼36,000 Gt C) and rapid emission (∼5 Gt C yr −1 ) of largely volcanic CO 2 source (∼−15%) is necessary to drive the observed pattern of CIE, the abrupt decline in surface ocean pH, and the extreme global temperature increase. This suggests that the massive amount of greenhouse gases may have pushed the Earth system toward a critical tipping point, beyond which extreme changes in ocean pH and temperature led to irreversible mass extinction. The comparatively amplified CIE observed in higher plant leaf waxes suggests that the surface waters of the Finnmark Platform were likely out of equilibrium with the initial massive centennial-scale release of carbon from the massive Siberian Traps volcanism, supporting the rapidity of carbon injection. Our modeling work reveals that carbon emission pulses are accompanied by organic carbon burial, facilitated by widespread ocean anoxia.more » « less
-
Abstract We compare abrupt CO2‐quadrupling (abrupt‐4xCO2) and ‐doubling (abrupt‐2xCO2) simulations across 10 CMIP6 models. Two models (CESM2 and MRI‐ESM2‐0) warm substantially more than twice as much under abrupt‐4xCO2 than abrupt‐2xCO2, which cannot be explained by the non‐logarithmic scaling of CO2forcing. Using an energy balance model, we show that increased warming rates within these two models are driven by both less‐negative radiative feedbacks and smaller global effective heat capacity under abrupt‐4xCO2. These differences are caused by a decrease in low cloud cover andshallower ocean heat storage, respectively; both are linked to smaller fractional declines in the Atlantic Meridional Overturning Circulation (AMOC) under abrupt‐4xCO2 (relative to abrupt‐2xCO2). On a global scale, higher climate sensitivity under larger forcing can be explained by a feedback‐temperature dependence; however, we find that forcing‐dependent spatial warming patterns due to AMOC decline are an important physical mechanism which reduces warming in a way that is not captured by a global‐mean framework.more » « less
-
Abstract Our understanding of the long‐term evolution of the Earth system is based on the assumption that terrestrial weathering rates should respond to, and hence help regulate, atmospheric CO2and climate. Increased terrestrial weathering requires increased carbonate accumulation in marine sediments, which in turn is expected to result in a long‐term deepening of the carbonate compensation depth (CCD). Here, we critically assess this long‐term relationship between climate and carbon cycling. We generate a record of marine deep‐sea carbonate abundance from selected late Paleocene through early Eocene time slices to reconstruct the position of the CCD. Although our data set allows for a modest CCD deepening, we find no statistically significant change in the CCD despite >3 °C global warming, highlighting the need for additional deep‐sea constraints on carbonate accumulation. Using an Earth system model, we show that the impact of warming and increased weathering on the CCD can be obscured by the opposing influences of ocean circulation patterns and sedimentary respiration of organic matter. From our data synthesis and modeling, we suggest that observations of warming, declining δ13C and a relatively stable CCD can be broadly reproduced by mid‐Paleogene increases in volcanic CO2outgassing and weathering. However, remaining data‐model discrepancies hint at missing processes in our model, most likely involving the preservation and burial of organic carbon. Our finding of a decoupling between the CCD and global marine carbonate burial rates means that considerable care is needed in attempting to use the CCD to directly gauge global carbonate burial rates and hence weathering rates.more » « less
-
The late Paleocene and early Eocene (LPEE) are characterized by long-term (million years, Myr) global warming and by transient, abrupt (kiloyears, kyr) warming events, termed hyperthermals. Although both have been attributed to greenhouse (CO2) forcing, the longer-term trend in climate was likely influenced by additional forcing factors (i.e., tectonics) and the extent to which warming was driven by atmospheric CO2remains unclear. Here, we use a suite of new and existing observations from planktic foraminifera collected at Pacific Ocean Drilling Program Sites 1209 and 1210 and inversion of a multiproxy Bayesian hierarchical model to quantify sea surface temperature (SST) and atmospheric CO2over a 6-Myr interval. Our reconstructions span the initiation of long-term LPEE warming (~58 Ma), and the two largest Paleogene hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM, ~56 Ma) and Eocene Thermal Maximum 2 (ETM-2, ~54 Ma). Our results show strong coupling between CO2and temperature over the long- (LPEE) and short-term (PETM and ETM-2) but differing Pacific climate sensitivities over the two timescales. Combined CO2and carbon isotope trends imply the carbon source driving CO2increase was likely methanogenic, organic, or mixed for the PETM and organic for ETM-2, whereas a source with higher δ13C values (e.g., volcanic degassing) is associated with the long-term LPEE. Reconstructed emissions for the PETM (5,800 Gt C) and ETM-2 (3,800 Gt C) are comparable in mass to future emission scenarios, reinforcing the value of these events as analogs of anthropogenic change.more » « less
An official website of the United States government

