skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants
Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18x lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy.  more » « less
Award ID(s):
1816387
PAR ID:
10355688
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Electronics
Volume:
11
Issue:
5
ISSN:
2079-9292
Page Range / eLocation ID:
682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors. We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks. Our hybrid architecture integrates an SNN for temporal feature extraction and an ANN for classification. We delve into the challenges of deploying such hybrid structures on hardware. Specifically, we deploy individual components on Intel's Neuromorphic Processor Loihi (for SNN) and Jetson Nano (for ANN). We also propose an accumulator circuit to transfer data from the spiking to the non-spiking domain. Furthermore, we conduct comprehensive performance analyses of hybrid SNN-ANN models on a heterogeneous system of neuromorphic and edge AI hardware, evaluating accuracy, latency, power, and energy consumption. Our findings demonstrate that the hybrid spiking networks surpass the baseline ANN model across all metrics and outperform the baseline SNN model in accuracy and latency. 
    more » « less
  2. Spiking neural networks (SNNs) have received increasing attention due to their high biological plausibility and energy efficiency. The binary spike-based information propagation enables efficient sparse computation in event-based and static computer vision applications. However, the weight precision and especially the membrane potential precision remain as high-precision values (e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores the membrane potential over time and typically updates its value in every time step. Such frequent read/write operations of high-precision membrane potential incur storage and memory access overhead in SNNs, which undermines the SNNs' compatibility with resource-constrained hardware. To resolve this inefficiency, prior works have explored the time step reduction and low-precision representation of membrane potential at a limited scale and reported significant accuracy drops. Furthermore, while recent advances in on-device AI present pruning and quantization optimization with different architectures and datasets, simultaneous pruning with quantization is highly under-explored in SNNs. In this work, we present SpQuant-SNN, a fully-quantized spiking neural network with ultra-low precision weights, membrane potential, and high spatial-channel sparsity, enabling the end-to-end low precision with significantly reduced operations on SNN. First, we propose an integer-only quantization scheme for the membrane potential with a stacked surrogate gradient function, a simple-yet-effective method that enables the smooth learning process of quantized SNN training. Second, we implement spatial-channel pruning with membrane potential prior, toward reducing the layer-wise computational complexity, and floating-point operations (FLOPs) in SNNs. Finally, to further improve the accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable potential threshold for SNN training. Equipped with high biological adaptiveness, minimal computations, and memory utilization, SpQuant-SNN achieves state-of-the-art performance across multiple SNN models for both event-based and static image datasets, including both image classification and object detection tasks. The proposed SpQuant-SNN achieved up to 13× memory reduction and >4.7× FLOPs reduction with ~1.8% accuracy degradation for both classification and object detection tasks, compared to the SOTA baseline. 
    more » « less
  3. IEEE (Ed.)
    Resistive random access Memory (RRAM) based spiking neural networks (SNN) are becoming increasingly attractive for pervasive energy-efficient classification tasks. However, such networks suffer from degradation of performance (as determined by classification accuracy) due to the effects of process variations on fabricated RRAM devices resulting in loss of manufacturing yield. To address such yield loss, a two-step approach is developed. First, an alternative test framework is used to predict the performance of fabricated RRAM based SNNs using the SNN response to a small subset of images from the test image dataset, called the SNN response signature (to minimize test cost). This diagnoses those SNNs that need to be performance-tuned for yield recovery. Next, SNN tuning is performed by modulating the spiking thresholds of the SNN neurons on a layer-by-layer basis using a trained regressor that maps the SNN response signature to the optimal spiking thresholdvalues during tuning. The optimal spiking threshold values are determined by an off-line optimization algorithm. Experiments show that the proposed framework can reduce the number of out-of-spec SNN devices by up to 54% and improve yield by as much as 8.6%. 
    more » « less
  4. Abstract Spiking Neural Networks (SNNs) have emerged as a compelling, energy-efficient alternative to traditional Artificial Neural Networks (ANNs) for static image tasks such as image classification and segmentation. However, in the more complex video classification domain, SNN-based methods fall considerably short of ANN-based benchmarks, due to the challenges in processing dense RGB frames. To bridge this gap, we propose ReSpike, a hybrid framework that synergizes the strengths of ANNs and SNNs to tackle action recognition tasks with high accuracy and low energy cost. By partitioning film clips into RGB image Key Frames, which primarily capture spatial information, and event-like Residual Frames, which emphasize temporal dynamics cues, ReSpike leverages ANN for processing spatial features and SNN for modeling temporal features. In addition, we propose a multi-scale cross-attention mechanism for effective feature fusion. Compared to state-of-the-art SNN baselines, our ReSpike hybrid architecture demonstrates significant performance improvements (e.g., >30% absolute accuracy improvement on both HMDB-51 and UCF-101 datasets). Additionally, ReSpike is the first SNN method capable of scaling to the large-scale benchmark Kinetics-400. Furthermore, ReSpike achieves comparable performance with prior ANN approaches while bringing better accuracy-energy tradeoff. 
    more » « less
  5. Building accurate and efficient deep neural network (DNN) models for intelligent sensing systems to process data locally is essential. Spiking neural networks (SNNs) have gained significant popularity in recent years because they are more biological-plausible and energy-efficient than DNNs. However, SNNs usually have lower accuracy than DNNs. In this paper, we propose to use SNNs for image sensing applications. Moreover, we introduce the DNN-SNN knowledge distillation algorithm to reduce the accuracy gap between DNNs and SNNs. Our DNNSNN knowledge distillation improves the accuracy of an SNN by transferring knowledge between a DNN and an SNN. To better transfer the knowledge, our algorithm creates two learning paths from a DNN to an SNN. One path is between the output layer and another path is between the intermediate layer. DNNs use real numbers to propagate information between neurons while SNNs use 1-bit spikes. To empower the communication between DNNs and SNNs, we utilize a decoder to decode spikes into real numbers. Also, our algorithm creates a learning path from an SNN to a DNN. This learning path better adapts the DNN to the SNN by allowing the DNN to learn the knowledge from the SNN. Our SNN models are deployed on Loihi, which is a specialized chip for SNN models. On the MNIST dataset, our SNN models trained by the DNN-SNN knowledge distillation achieve better accuracy than the SNN models on GPU trained by other training algorithms with much lower energy consumption per image. 
    more » « less