skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthetic growth by self-lubricated photopolymerization and extrusion inspired by plants and fungi
Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.  more » « less
Award ID(s):
1830950
PAR ID:
10355917
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
33
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Pneumatically operated soft growing robots that extend via tip eversion are well-suited for navigation in confined spaces. Adding the ability to interact with the environment using sensors and tools attached to the robot tip would greatly enhance the usefulness of these robots for exploration in the field. However, because the material at the tip of the robot body continually changes as the robot grows and retracts, it is challenging to keep sensors and tools attached to the robot tip during actuation and environment interaction. In this paper, we analyze previous designs for mounting to the tip of soft growing robots, and we present a novel device that successfully remains attached to the robot tip while providing a mounting point for sensors and tools. Our tip mount incorporates and builds on our previous work on a device to retract the robot without undesired buckling of its body. Using our tip mount, we demonstrate two new soft growing robot capabilities: (1) pulling on the environment while retracting, and (2) retrieving and delivering objects. Finally, we discuss the limitations of our design and opportunities for improvement in future soft growing robot tip mounts. 
    more » « less
  2. Soft robot serial chain manipulators with the capability for growth, stiffness control, and discrete joints have the potential to approach the dexterity of traditional robot arms, while improving safety, lowering cost, and providing an increased workspace, with potential application in home environments. This paper presents an approach for design optimization of such robots to reach specified targets while minimizing the number of discrete joints and thus construction and actuation costs. We define a maximum number of allowable joints, as well as hardware constraints imposed by the materials and actuation available for soft growing robots, and we formulate and solve an optimization problem to output a planar robot design, i.e., the total number of potential joints and their locations along the robot body, which reaches all the desired targets, avoids known obstacles, and maximizes the workspace. We demonstrate a process to rapidly construct the resulting soft growing robot design. Finally, we use our algorithm to evaluate the ability of this design to reach new targets and demonstrate the algorithm's utility as a design tool to explore robot capabilities given various constraints and objectives. 
    more » « less
  3. null (Ed.)
    Soft, tip-extending, pneumatic “vine robots” that grow via eversion are well suited for navigating cluttered environments. Two key mechanisms that add to the robot’s functionality are a tip-mounted retraction device that allows the growth process to be reversed, and a tip-mounted camera that enables vision. However, previous designs used rigid, relatively heavy electromechanical retraction devices and external camera mounts, which reduce some advantages of these robots. These designs prevent the robot from squeezing through tight gaps, make it challenging to lift the robot tip against gravity, and require the robot to drag components against the environment. To address these limitations, we present a soft, pneumatically driven retraction device and an internal camera mount that are both lightweight and smaller than the diameter of the robot. The retraction device is composed of a soft, extending pneumatic actuator and a pair of soft clamping actuators that work together in an inch-worming motion. The camera mount sits inside the robot body and is kept at the tip of the robot by two low-friction interlocking components. We present characterizations of our retraction device and demonstrations that the robot can grow and retract through turns, tight gaps, and sticky environments while transmitting live video from the tip. Our designs advance the ability of everting vine robots to navigate difficult terrain while collecting data. 
    more » « less
  4. A soft robot is a robot made of soft materials and is capable of doing complex tasks. The soft robot that was created in this experiment is a soft trunk robot actuated by strings. The purpose of this robot is to be able to move around small spaces easily and be able to perform complex tasks. For example, positioning a tip mounted sensor to gather data. From the results in the experiment, the robot can move to a target position when given a set of coordinates by using a P-controller. 
    more » « less
  5. Abstract The mechanoreceptors of the human tactile sensory system contribute to natural grasping manipulations in everyday life. However, in the case of robot systems, attempts to emulate humans’ dexterity are still limited by tactile sensory feedback. In this work, a soft optical lightguide is applied as an afferent nerve fiber in a tactile sensory system. A skin‐like soft silicone material is combined with a bristle friction model, which is capable of fast and easy fabrication. Due to this novel design, the soft sensor can provide not only normal force (up to 5 Newtons) but also lateral force information generated by stick‐slip processes. Through a static force test and slip motion test, its ability to measure normal forces and to detect stick‐slip events is demonstrated. Finally, using a robotic gripper, real‐time control applications are investigated where the sensor helps the gripper apply sufficient force to grasp objects without slipping. 
    more » « less