The mechanoreceptors of the human tactile sensory system contribute to natural grasping manipulations in everyday life. However, in the case of robot systems, attempts to emulate humans’ dexterity are still limited by tactile sensory feedback. In this work, a soft optical lightguide is applied as an afferent nerve fiber in a tactile sensory system. A skin‐like soft silicone material is combined with a bristle friction model, which is capable of fast and easy fabrication. Due to this novel design, the soft sensor can provide not only normal force (up to 5 Newtons) but also lateral force information generated by stick‐slip processes. Through a static force test and slip motion test, its ability to measure normal forces and to detect stick‐slip events is demonstrated. Finally, using a robotic gripper, real‐time control applications are investigated where the sensor helps the gripper apply sufficient force to grasp objects without slipping.
more » « less- Award ID(s):
- 1849213
- PAR ID:
- 10386053
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper introduces a vision-based tactile sensor FingerVision, and explores its usefulness in tactile behaviors. FingerVision consists of a transparent elastic skin marked with dots, and a camera that is easy to fabricate, low cost, and physically robust. Unlike other vision-based tactile sensors, the complete transparency of the FingerVision skin provides multimodal sensation. The modalities sensed by FingerVision include distributions of force and slip, and object information such as distance, location, pose, size, shape, and texture. The slip detection is very sensitive since it is obtained by computer vision directly applied to the output from the FingerVision camera. It provides high-resolution slip detection, which does not depend on the contact force, i.e., it can sense slip of a lightweight object that generates negligible contact force. The tactile behaviors explored in this paper include manipulations that utilize this feature. For example, we demonstrate that grasp adaptation with FingerVision can grasp origami, and other deformable and fragile objects such as vegetables, fruits, and raw eggs.more » « less
-
The ability to grasp and manipulate small objects in cluttered environments remains a significant challenge. This letter introduces a novel approach that utilizes a tactile sensor-equipped gripper with eight degrees of freedom to overcome these limitations. We employ DenseTact 2.0 for the gripper, enabling precise control and improved grasp success rates, particularly for small objects ranging from 5 mm to 25 mm. Our integrated strategy incorporates the robot arm, gripper, and sensor to manipulate and orient small objects for subsequent classification, effectively. We contribute a specialized dataset designed for classifying these objects based on tactile sensor output and a new control algorithm for in-hand orientation tasks. Our system demonstrates 88% of successful grasp and successfully classified small objects in cluttered scenarios.more » « less
-
Madden, John D. ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)Current robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. Human grasp is gentle yet firm, with integrated tactile touch feedback. Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure from gentle touch to high impact, controllably contract and expand at low voltage (battery levels), and attenuate force. The development of this technology towards sensing has provided for fingertip-like sensors that were able to detect very light pressures down to 0.01 N and even 0.005 N, with a wide pressure range to 25 N and more and with high linearity. By using these soft yet robust Tactile Fingertip™ sensors, immediate feedback was generated at the first point of contact. Because these elastomeric pads provided a soft compliant interface, the first point of contact did not apply excessive force, allowing for gentle object handling and control of the force applied to the object. The Tactile Fingertip could also detect a change in pressure location on its surface, i.e., directional glide provided real time feedback, making it possible to detect and prevent slippage by then adjusting the grip strength. Machine learning (ML) and artificial intelligence (AI) were integrated into these sensors for object identification along with the determination of good grip (position, grip force, no slip, no wobble) for pick-and-place and other applications. Synthetic Muscle™ is also being retrofitted as actuators into a human hand-like biomimetic gripper. The combination of EAP shape-morphing and sensing promises the potential for robotic grippers with human hand-like control and tactile sensing. This is expected to advance robotics, whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure, as well as for collaborative robotics to allow humans and robots to intuitively work safely and effectively together.more » « less
-
ABSTRACT Drilling vibrations can cause inefficient drilling and accelerated damage to system components. Therefore, reducing or eliminating such vibrations is a major focus area for natural gas and geothermal drilling applications. One particularly important vibration mode is stick-slip. Stick-slip occurs when the bottom-hole angular velocity starts oscillating while the top hole angular velocity remains relatively constant. This not only causes poor drilling, it is also difficult to detect using surface sensors. In this work, we describe the development and testing of a benchtop drilling system for studying stick-slip dynamics and mitigation. We show how this system can produce stick-slip oscillations. Next, we use this data to formulate a data-driven rock-bit interaction model. This model can be combined with linear systems analysis to predict stick-slip and understand mitigation methods. We describe out instrumentation that enables closed-loop control under simulated communications constraints. We conclude by providing preliminary experimental data on bench-level stick-slip.
INTRODUCTION Exploration via autonomous drilling processes for geothermal resources is an important focus area for drilling research. However, to fully realize the clean-energy promise of geothermal energy, key challenges still need to be resolved.
Issues arising in the drilling process often originate from a drillstring's increased susceptibility to vibrational oscillations as depths increase. Some examples of drilling vibrations include stick-slip (Navarro-Lopez and Suarez, 2004), bit-bounce (Spanos et al., 1995), and whirl (Jansen, 1991). Torsional oscillations are the focus of this work.
Torsional vibrations result in a destructive phenomenon known as stick-slip. Initiated at the bit-rock surface, the drillstring bit experiences large angular velocity oscillations not seen at the surface (Pavone and Desplans, 1994; Besselink et al., 2011; Kessai et al., 2020). Stick-slip results in premature bit wear and drillstring fracture.
Stick-slip is a fundamentally nonlinear and unpredictable phenomena. Stick-slip results from the combination of bit-rock interactions and drillstring compliance. As a result, there is a key need for experimental studies of stick-slip dynamics and mitigation.
-
Madden, John D. ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure (gentle touch to high impact), controllably contract and expand at low voltage (1.5 V to 50 V, including use of batteries), and attenuate force. We are in the robotics era, but robots do have their challenges. Currently, robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. For handling fragile objects, if the grip is too tight, breakage occurs, and if the grip is too loose, the object will slip out of the grasp, also leading to breakage. Rigid robotic grippers using a visual feedback loop can struggle to determine the exact point and quality of contact. Robotic grippers can also get a stuttering effect in the visual feedback loop. By using soft Synthetic Muscle™ based EAP pads as the sensors, immediate feedback was generated at the first point of contact. Because these pads provided a soft, compliant interface, the first point of contact did not apply excessive force, allowing the force applied to the object to be controlled. The EAP sensor could also detect a change in pressure location on its surface, making it possible to detect and prevent slippage by then adjusting the grip strength. In other words, directional glide provided feedback for the presence of possible slippage to then be able to control a slightly tighter grip, without stutter, due to both the feedback and the soft gentleness of the fingertip-like EAP pads themselves. The soft nature of the EAP fingertip pad also naturally held the gripped object, improving the gripping quality over rigid grippers without an increase in applied force. Analogous to finger-like tactile touch, the EAPs with appropriate coatings and electronics were positioned as pressure sensors in the fingertip or end effector regions of robotic grippers. This development of using Synthetic Muscle™ based EAPs as soft sensors provided for sensors that feel like the pads of human fingertips. Basic pressure position and magnitude tests have been successful, with pressure sensitivity down to 0.05 N. Most automation and robots are very strong, very fast, and usually need to be partitioned away from humans for safety reasons. For many repetitive tasks that humans do with delicate or fragile objects, it would be beneficial to use robotics; whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure. Synthetic Muscle™ was also retrofitted as actuator systems into off-the-shelf robotic grippers and is being considered in novel biomimetic gripper designs, operating at low voltages (less than 50 V). This offers biomimetic movement by contracting like human muscles, but also exceeds natural biological capabilities by expanding under reversed electric polarity. Human grasp is gentle yet firm, with tactile touch feedback. In conjunction with shape-morphing abilities, these EAPs also are being explored to intrinsically sense pressure due to the correlation between mechanical force applied to the EAP and its electronic signature. The robotic field is experiencing phenomenal growth in this fourth phase of the industrial revolution, the robotics era. The combination of Ras Labs’ EAP shape-morphing and sensing features promises the potential for robotic grippers with human hand-like control and tactile sensing. This work is expected to advance both robotics and prosthetics, particularly for collaborative robotics to allow humans and robots to intuitively work safely and effectively together.more » « less