skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: COVID-Forecast-Graph: An Open Knowledge Graph for Consolidating COVID-19 Forecasts and Economic Indicators via Place and Time
Abstract. The longer the COVID-19 pandemic lasts, the more apparent it becomes that understanding its social drivers may be as important as understanding the virus itself. One such social driver is misinformation and distrust in institutions. This is particularly interesting as the scientific process is more transparent than ever before. Numerous scientific teams have published datasets that cover almost any imaginable aspects of COVID-19 during the last two years. However, consistently and efficiently integrating and making sense of these separate data “silos” to scientists, decision makers, journalists, and more importantly the general public remain a key challenge with important implications for transparency. Several types of knowledge graphs have been published to tackle this issue and to enable data crosswalks by providing rich contextual information. Interestingly, none of these graphs has focused on COVID-19 forecasts despite them acting as the underpinning for decision making. In this work we motivate the need for exposing forecasts as a knowledge graph, showcase queries that run against the graph, and geographically interlink forecasts with indicators of economic impacts.  more » « less
Award ID(s):
2033521
PAR ID:
10355925
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AGILE: GIScience Series
Volume:
3
ISSN:
2700-8150
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Substantial research indicates that local explanatory models of disease shape heath behaviors. However, less is known regarding how cultural models of disease influence interpretations of vaccines. Vaccination decisions are based around a plethora of social and cultural factors, including beliefs about disease, cultural-historical experiences with healthcare, and recent vaccination experiences. To understand how local interpretations of vaccination influence vaccination-decision making, we explore cultural models of health, vaccine norms, and COVID-19 beliefs and experiences in Himba and Herero pastoralists of the Kunene region of northern Namibia. Mixed sex focus groups were conducted in July and August of 2024 in communities across a rural and peri-urban gradient. Discussion prompts were designed to elicit dialogue on vaccination beliefs, norms, and experiences, as well as their recent experience with COVID-19. Results from these focus groups indicate that there was substantial confusion differentiating vaccinations from other types of injections. For childhood vaccines, immunization is normative and expected. Women were the primary decision-makers for childhood immunization, reflecting the matrilineal bias of Himba and Herero kinship. For adults, while local leaders had some influence interfacing with public health outreach, the decision to get vaccinated was largely a personal one. Beliefs about COVID-19 were interpreted through pre-existing cultural models of illness, and beliefs about the origins of COVID-19 reflected mistrust in international actors. Fears about COVID-19 vaccines were common, particularly concerns about vaccine safety. However, fears of the illness typically overrode fears of the vaccine, and most report receiving the vaccine despite these worries. These results highlight the importance of extending research beyond a knowledge, attitude, practice framework to incorporate local explanatory models and cultural-historical experiences in understanding vaccine-decision making. These features are particularly important in more traditional, rural, and marginalized populations where medical mistrust is common and local explanatory models of disease drive healthcare decision-making. 
    more » « less
  2. This study builds a coronavirus knowledge graph (KG) by merging two information sources. The first source is Analytical Graph (AG), which integrates more than 20 different public datasets related to drug discovery. The second source is CORD-19, a collection of published scientific articles related to COVID-19. We combined both chemo genomic entities in AG with entities extracted from CORD-19 to expand knowledge in the COVID-19 domain. Before populating KG with those entities, we perform entity disambiguation on CORD-19 collections using Wikidata. Our newly built KG contains at least 21,700 genes, 2500 diseases, 94,000 phenotypes, and other biological entities (e.g., compound, species, and cell lines). We define 27 relationship types and use them to label each edge in our KG. This research presents two cases to evaluate the KG’s usability: analyzing a subgraph (ego-centered network) from the angiotensin-converting enzyme (ACE) and revealing paths between biological entities (hydroxychloroquine and IL-6 receptor; chloroquine and STAT1). The ego-centered network captured information related to COVID-19. We also found significant COVID-19-related information in top-ranked paths with a depth of three based on our path evaluation. 
    more » « less
  3. In 2020, the White House released the “Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset,” wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on the graph mining and transformer models. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover ongoing research findings such as the relationship between COVID-19 and oxytocin hormone.All code, details, and pre-trained models are available at https://github.com/IlyaTyagin/AGATHA-C-GP. 
    more » « less
  4. null (Ed.)
    Situational awareness provides the decision making capability to identify, process, and comprehend big data. In our approach, situational awareness is achieved by integrating and analyzing multiple aspects of data using stacked bar graphs and geographic representations of the data. We provide a data visualization tool to represent COVID pandemic data on top of the geographical information. The combination of geospatial and temporal data provides the information needed to conduct situational analysis for the COVID-19 pandemic. By providing interactivity, geographical maps can be viewed from different perspectives and offer insight into the dynamical aspects of the COVID-19 pandemic for the fifty states in the USA. We have overlaid dynamic information on top of a geographical representation in an intuitive way for decision making. We describe how modeling and simulation of data increase situational awareness, especially when coupled with immersive virtual reality interaction. This paper presents an immersive virtual reality (VR) environment and mobile environment for data visualization using Oculus Rift head-mounted display and smartphones. This work combines neural network predictions with human-centric situational awareness and data analytics to provide accurate, timely, and scientific strategies in combatting and mitigating the spread of the coronavirus pandemic. Testing and evaluation of the data visualization tool have been done with real-time feed of COVID pandemic data set for immersive environment, non-immersive environment, and mobile environment. 
    more » « less
  5. Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. 
    more » « less