skip to main content


Title: Application of plasma for the removal of pharmaceuticals in synthetic urine
Removal of pharmaceuticals in source-separated urine is an important step toward gaining acceptance of urine-derived fertilizers among important stakeholders such as consumers, farmers, and regulatory agencies. Advanced oxidation processes (AOPs) have been studied for the removal of pharmaceuticals in various complex matrices, including treated wastewaters. A complexity associated with AOP methods that rely primarily on hydroxyl radicals as the oxidizing agents is that they readily lose effectiveness in the presence of scavengers. Here, we investigated the potential for capturing the synergistic effects of producing multiple oxidative chemical species simultaneously in a plasma reactor to oxidize six pharmaceuticals (acetaminophen, atenolol, 17α-ethynyl estradiol, ibuprofen, naproxen, and sulfamethoxazole) in source-separated urine being processed into a fertilizer. The results show that the plasma reactor produced hydroxyl radicals as the primary oxidizing agent and the effects of other oxidizing species were minimal. Plasma experienced scavenging in both fresh and hydrolyzed urine; furthermore, it oxidized pharmaceuticals at similar rates across both matrices. Additionally, the negative impacts of electrical discharge formation stemming from increased solution conductivity appeared to plateau. The energy required per order of magnitude of pharmaceutical transformed was up to 2 orders of magnitude higher for plasma than for a traditional UV/H 2 O 2 reactor and depended upon the matrix. Despite scavenging and energy concerns, plasma can oxidize pharmaceuticals in fresh and hydrolyzed urine and is worthy of further development for on-site or building-scale applications where the value of convenience, simplicity, and performance offsets energy efficiency concerns.  more » « less
Award ID(s):
1639244
NSF-PAR ID:
10356022
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
8
Issue:
3
ISSN:
2053-1400
Page Range / eLocation ID:
523 to 533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Destruction of pharmaceuticals excreted in urine can be an efficient approach to eliminate these environmental pollutants. However, urine contains high concentrations of chloride, ammonium, and bicarbonate, which may hinder treatment processes. This study evaluated the application of ferrate(VI) (FeVIO42-, Fe(VI)) to oxidize pharmaceuticals (carbamazepine (CBZ), naproxen (NAP), trimethoprim (TMP) and sulfonamide antibiotics (SAs)) in synthetic hydrolyzed human urine and uncovered new effects from urine’s major inorganic constituents. Chloride slightly decreased pharmaceuticals’ removal rate by Fe(VI) due to the ionic strength effect. Ammonium (0.5 M) in undiluted hydrolyzed urine posed a strong scavenging effect, but lower concentrations (≤ 0.25 M) of ammonium enhanced the pharmaceuticals’ degradation by 300 µM Fe(VI), likely due to the reactive ammonium complex form of Fe(V)/Fe(IV). For the first time, bicarbonate was found to significantly promote the oxidation of aniline-containing SAs by Fe(VI) and alter the reaction stoichiometry of Fe(VI) and SA from 4:1 to 3:1. In-depth investigation indicated that bicarbonate not only changed the Fe(VI):SA complexation ratio from 1:2 to 1:1, but provided stabilizing effect for Fe(V) intermediate formed in situ, enabling its degradation of SAs. Overall, results of this study suggested that Fe(VI) is a promising oxidant for the removal of pharmaceuticals in hydrolyzed urine. 
    more » « less
  2. Peracetic acid (PAA) is a widely used disinfectant, and combined UV light with PAA (i.e. UV/PAA) can be a novel advanced oxidation process for elimination of water contaminants. This study is among the first to evaluate the photolysis of PAA under UV irradiation (254 nm) and degradation of pharmaceuticals by UV/PAA. PAA exhibited high quantum yields (Φ254nm = 1.20 and 2.09 mol·Einstein−1 for the neutral (PAA0) and anionic (PAA-) species, respectively) and also showed scavenging effects on hydroxyl radicals (k•OH/PAA0 = (9.33±0.3)×108 M−1·s−1 and k•OH/PAA- = (9.97±2.3)×109 M−1·s−1). The pharmaceuticals were persistent with PAA alone but degraded rapidly by UV/PAA. The contributions of direct photolysis, hydroxyl radicals, and other radicals to pharmaceutical degradation under UV/PAA were systematically evaluated. Results revealed that •OH was the primary radical responsible for the degradation of carbamazepine and ibuprofen by UV/PAA, whereas CH3C(=O)O• and/or CH3C(=O)O2• contributed significantly to the degradation of naproxen and 2-naphthoxyacetic acid by UV/PAA in addition to •OH. The carbon-centered radicals generated from UV/PAA showed strong reactivity to oxidize certain naphthyl compounds. The new knowledge obtained in this study will facilitate further research and development of UV/PAA as a new degradation strategy for water contaminants. 
    more » « less
  3. In a circular nutrient economy, nitrogen and phosphorous are removed from waste streams and captured as valuable fertilizer products, to more sustainably reuse the resources in closed-loops and simultaneously protect receiving aquatic environments from harmful N and P emissions. For nutrient reclamation to be competitive with the existing practices of N fixation and P mining, the methods of recovery must achieve at least comparable energy consumption. This study employed the Gibbs free energy of separation to quantify the minimum energy required to recover various N and P fertilizer products from waste streams of fresh and hydrolyzed urine, greywater, domestic wastewater, and secondary treated wastewater effluent. The comparative advantages in theoretical energy intensities for N and P recovery from nutrient-dense waste streams, such as fresh and hydrolyzed urine, were assessed against the other more dilute sources. For example, compared to reclaiming the nutrients from treated wastewater effluent at centralized wastewater treatment plants, the minimum energy required to recover 1.0 M NH 3(aq) from source-separated hydrolyzed urine can be ≈40–68% lower, whereas recovering KH 2 PO 4(s) from diverted fresh urine can, in principle, be ≈13–34% less energy intensive. The study also evaluated the efficiencies required by separation techniques for the energy demand of N and P recovery to be lower than the current production approaches of the Haber–Bosch process and phosphate rock mining. For instance, the most energetically favorable ammoniacal nitrogen and orthophosphate reclamation schemes, which target hydrolyzed and fresh urine, respectively, require energy efficiencies >7% and >39%. This study highlights that strategic selection of waste stream and fertilizer product can enable the most expedient recovery of nutrients and realize a circular economy model for N and P management. 
    more » « less
  4. Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (⋅OH) and/or hydrated electrons (e−(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons.

     
    more » « less
  5. Abstract

    Wildfires are important sources of atmospheric reactive nitrogen. The reactive nitrogen species partitioning generally depends on fire characteristics. One reactive nitrogen compound, nitrous acid (HONO), is a source of hydroxyl radicals and nitric oxide, which can impact the oxidizing capacity of the atmosphere and fire plume chemistry and composition. We study the Australian wildfire season of 2019–2020, known as Black Summer, where numerous large and intense wildfires burned throughout the continent. We use HONO and nitrogen dioxide (NO2) from the TROPOspheric Monitoring Instrument (TROPOMI) and fire radiative power (FRP) from the Visible Infrared Imaging Radiometer Suite to investigate HONO and NO2relationships with fire characteristics. The ratio of HONO to NO2increases linearly with FRP both in Australia and globally. Both Australian and global fire relationships depend strongly on land cover type. These relationships can be applied to emission inventories to improve wildfire emission representation in models.

     
    more » « less