skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cosmogenic nuclide techniques
Cosmogenic nuclide techniques have advanced the geosciences by providing tools for exposure age dating, burial dating, quantification of denudation rates and more. Advances in geochemistry, accelerator mass spectrometry and atom trap trace analyses are ushering in a new cosmogenic nuclide era, by improving the sensitivity of measurements to ultra- trace levels that now allow new applications of these techniques to numerous Earth surface processes. The advances in cosmogenic nuclide techniques have equipped the next generation of geoscientists with invaluable tools for understanding the planet, but addressing pressing needs requires rising to an even greater challenge: imbuing within the cosmogenic community, and the geosciences as a whole, a commitment to justice, equity, diversity and inclusion that matches our dedication to scientific research. In this Primer, we review the state of the art and recent exciting breakthroughs in the use of cosmogenic nuclide techniques, focusing on erosion factories over space and time, and new perspectives on ice sheet stability. We also highlight promising ways forward in enhancing inclusion in the field, as well as obstacles that remain to be overcome.  more » « less
Award ID(s):
1903334
PAR ID:
10356212
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature reviews methods primers
Volume:
2
Issue:
18
ISSN:
2662-8449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Measurements of multiple cosmogenic nuclides in a single sample are valuable for various applications of cosmogenic nuclide exposure dating and allow for correcting exposure ages for surface weathering and erosion and establishing exposure–burial history. Here we provide advances in the measurement of cosmogenic 10Be in pyroxene and constraints on the production rate that provide new opportunities for measurements of multi-nuclide systems, such as 10Be/3He, in pyroxene-bearing samples. We extracted and measured cosmogenic 10Be in pyroxene from two sets of Ferrar Dolerite samples collected from the Transantarctic Mountains in Antarctica. One set of samples has 10Be concentrations close to saturation, which allows for the production rate calibration of 10Be in pyroxene by assuming production–decay equilibrium. The other set of samples, which has a more recent exposure history, is used to determine if a rapid fusion method can be successfully applied to samples with Holocene to Last Glacial Maximum exposure ages. From measured 10Be concentrations in the near-saturation sample set we find the production rate of 10Be in pyroxene to be 3.74 ± 0.10 atoms g−1 yr−1, which is consistent with 10Be/3He paired nuclide ratios from samples assumed to have simple exposure. Given the high 10Be concentration measured in this sample set, a sample mass of ∼ 0.5 g of pyroxene is sufficient for the extraction of cosmogenic 10Be from pyroxene using a rapid fusion method. However, for the set of samples that have low 10Be concentrations, measured concentrations were higher than expected. We attribute spuriously high 10Be concentrations to failure in removing all meteoric 10Be and/or a highly variable and poorly quantified procedural blank background correction. 
    more » « less
  2. Abstract Geochronology and geochemistry are critical tools in geoscience research and research training, but students and faculty at many institutions have little or no access to the specialized and expensive facilities needed for sample preparation and analysis. Here, we explore whether a community laboratory, dedicated to hosting and training visitors, can help address this inequity by increasing access to specialized geochemical techniques and the resulting data. We report the first three years of outcomes from the Community Cosmogenic Facility, the goal of which is to improve access by making an increasingly important analytic technique more widely available. Although the facility we describe here focuses on cosmogenic nuclide sample preparation, the model we present is viable across the geosciences. Three years of development, assessment, and refinement demonstrate that the community laboratory model increased technique access to undergraduate and graduate students. Women were represented in first‐authored, peer‐reviewed papers at a rate nearly twice that of the broader community. In contrast, the participation of under‐represented groups did not increase over geoscience norms. Our data clearly illustrate that challenges to fostering a diverse geoscience community persist. Proactive interaction with faculty and students at Minority Serving Institutions, cohort‐focused training models, and financial support to visit community laboratories may be future steps toward further diversifying users of community facilities. 
    more » « less
  3. Abstract Cosmogenic nuclide dating is an essential component of studying Earth surface processes, but it requires knowledge of how nuclide production rates vary in time and space. Typically, production rates are calibrated at sites with independently well‐constrained exposure histories and then scaled to other sites of interest using scaling frameworks that account for spatial and temporal variations in the secondary cosmic‐ray flux at Earth's surface. To date, scaling schemes for terrestrial cosmogenic nuclide production rates have been developed for the Quaternary, yet cosmogenic nuclide applications that extend beyond the Quaternary are becoming more prevalent. For these deeper time applications, production rate calculations using scaling models optimized for the latest Quaternary neglect longer term spatiotemporal variations in geomagnetic field intensity, paleogeography, and paleoatmospheric depth. We present a production rate scaling scheme for the past 70 million years, SPRITE (Scaling Production Rates In deep TimE). This framework extends existing scaling schemes into deeper time by (a) accounting for site‐specific changes in paleolatitude, (b) integrating a geomagnetic field intensity model rooted in data from a global paleomagnetic database, and (c) incorporating climate‐driven, time‐varying atmospheric depths. We evaluate the efficacy of our model by applying it to existing data sets from paleoexposure sites, and from sites with apparent continuous million‐year exposure histories. This scaling model can be applied with measurements of stable cosmogenic nuclides to research questions such as constraining hiatus durations between ancient lava flows and calculating the formation timescales of stable landforms in arid environments over millions of years. 
    more » « less
  4. null (Ed.)
    Important information about past climates can be determined from reconstructed equilibrium line altitudes (ELA) of mountain paleoglaciers, specifically the temperature and precipitation accompanying a glacier in equilibrium. Previous reconstructions of Late Pleistocene ELAs of mountain glaciers across the western United States have been used to infer the pattern of temperature and precipitation change across the region, although most of the work was based on presumed ages and limited mapping of glacial deposits and landforms. Cosmogenic nuclide exposure dating of moraines combined with updated mapping and aerial imagery afford an opportunity to revisit the pattern of regional ELAs during multiple episodes of the last Pleistocene glaciation. The goal of this research is to reconstruct ELAs in the same region of previous reconstructions based on glacial sediments that have been dated using cosmogenic nuclide exposure ages. We focus on the large number of glacial valleys with moraines corresponding to the Last Glacial Maximum (LGM; 26.5-19.0 ka). Paleo-ELAs are estimated using the toe to headwall altitude ratio and the accumulation area ratio determined from published glacier reconstructions and existing glacial mapping. Cosmogenic-exposure ages of moraines are compiled from the informal cosmogenic nuclide exposure age database for alpine glacial features (ICE-D Alpine) and represented in a geographic information system along with ELAs for each glacial valley. A reconstructed ELA surface spanning the conterminous western United States is produced using existing algorithms in ArcGIS. Results show reconstructed ELAs generally lower than initially estimated and a larger range of ELAs across the region. In the Sierra Nevada, ELAs increase southeastward, which is consistent with previous estimates, spanning a range from 1800 to 2800 m asl. ELAs rise eastward across the Basin and Range toward the western shore of the area covered by Lake Bonneville, and then decrease eastward toward the Wasatch Mountains. This pattern is inconsistent with previous estimates and may reflect a west-to-east precipitation gradient that differs from modern climate. We discuss this pattern and broader features of the ELA surface of the LGM and later episodes of the last Pleistocene glaciation. 
    more » « less
  5. null (Ed.)
    Abstract High-elevation rock surfaces in Antarctica have some of the oldest cosmogenic-nuclide exposure ages on Earth, dating back to the Miocene. A compilation of all available 3He, 10Be, and 21Ne exposure-age data from the Antarctic continent shows that exposure histories recorded by these surfaces extend back to, but not before, the mid-Miocene cooling at 14–15 Ma. At high elevation, this cooling entailed a transition between a climate in which liquid water and biota were present and could contribute to surface weathering and erosion, and a polar desert climate in which virtually all weathering and erosion processes had been shut off. This climate appears to have continued uninterrupted between the mid-Miocene and the present. 
    more » « less