skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Design of Shape Forming Elements for Architected Composites via Bayesian Optimization and Genetic Algorithms: A Concept Evaluation
This article presents the first use of shape forming elements (SFEs) to produce architected composites from multiple materials in an extrusion process. Each SFE contains a matrix of flow channels connecting input and output ports, where materials are routed between corresponding ports. The mathematical operations of rotation and shifting are described, and design automation is explored using Bayesian optimization and genetic algorithms to select fifty or more parameters for minimizing two objective functions. The first objective aims to match a target cross-section by minimizing the pixel-by-pixel error, which is weighted with the structural similarity index (SSIM). The second objective seeks to maximize information content by minimizing the SSIM relative to a white image. Satisfactory designs are achieved with better objective function values observed in rectangular rather than square flow channels. Validation extrusion of modeling clay demonstrates that while SFEs impose complex material transformations, they do not achieve the material distributions predicted by the digital model. Using the SSIM for results comparison, initial stages yielded SSIM values near 0.8 between design and simulation, indicating a good initial match. However, the control of material processing tended to decline with successive SFE processing with the SSIM of the extruded output dropping to 0.023 relative to the design intent. Flow simulations more closely replicated the observed structures with SSIM values around 0.4 but also failed to predict the intended cross-sections. The evaluation highlights the need for advanced modeling techniques to enhance the predictive accuracy and functionality of SFEs for biomedical, energy storage, and structural applications.  more » « less
Award ID(s):
2118808 2119040
PAR ID:
10555236
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
NSF PAR
Date Published:
Journal Name:
Materials
Volume:
17
Issue:
21
ISSN:
1996-1944
Page Range / eLocation ID:
5339
Subject(s) / Keyword(s):
architected composites additive manufacturing artificial intelligence optimization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Measurements of the star formation efficiency (SFE) of giant molecular clouds (GMCs) in the Milky Way generally show a large scatter, which could be intrinsic or observational. We use magnetohydrodynamic simulations of GMCs (including feedback) to forward-model the relationship between the true GMC SFE and observational proxies. We show that individual GMCs trace broad ranges of observed SFE throughout collapse, star formation, and disruption. Low measured SFEs ($${\ll} 1\hbox{ per cent}$$) are ‘real’ but correspond to early stages; the true ‘per-freefall’ SFE where most stars actually form can be much larger. Very high ($${\gg} 10\hbox{ per cent}$$) values are often artificially enhanced by rapid gas dispersal. Simulations including stellar feedback reproduce observed GMC-scale SFEs, but simulations without feedback produce 20× larger SFEs. Radiative feedback dominates among mechanisms simulated. An anticorrelation of SFE with cloud mass is shown to be an observational artefact. We also explore individual dense ‘clumps’ within GMCs and show that (with feedback) their bulk properties agree well with observations. Predicted SFEs within the dense clumps are ∼2× larger than observed, possibly indicating physics other than feedback from massive (main-sequence) stars is needed to regulate their collapse. 
    more » « less
  2. null (Ed.)
    Compressibility and viscosity of polymer feedstock are critical to their volumetric flow rate, weld strength, and dimensional accuracy in material extrusion additive manufacturing. In this work, the compressibility and viscosity of an acrylonitrile butadiene styrene (ABS) material is characterized with an instrumented hot end design. Experiments are first performed with a blocked nozzle to characterize the compressibility behavior. The results closely emulate the pressure-volume-temperature (PVT) behavior of a characterized generic ABS. Experiments are then performed with an open nozzle over a range of volumetric flow rates and temperatures. The static pressure data is fit to power-law, Ellis, and Cross viscosity models and the dynamic melt pressure data is then used to jointly fit material constitutive models for compressibility and viscosity. The results suggest that the joint fitting substantially improves the fidelity relative to the separately characterized viscosity and compressibility. The implemented methods support material extrusion process simulation and control including real-time identification of process faults such as (1) limited melting capacity of the hot end, (2) skipping (grinding) of the extruder drive gears, (3) low initial nozzle temperature, (4) varying flow rates associated with the intermeshing gear tooth velocity profile, and (5) delays and reduced melt pressures due to drool prior to extrusion. The ability to monitor the printing process for faults in real time, such as that presented in this work, is critical to born qualified parts. Additionally, these approaches can be used to screen new materials and identify optimal processing conditions that avoid these process faults. 
    more » « less
  3. Multi-principal-element alloys (MPEAs) based on 3d-transition metals show remarkable mechanical properties. The stacking fault energy (SFE) in face-centered cubic (fcc) alloys is a critical property that controls underlying deformation mechanisms and mechanical response. Here, we present an exhaustive density-functional theory study on refractory- and copper-reinforced Cantor-based systems to ascertain the effects of refractory metal chemistry on SFE. We find that even a small percent change in refractory metal composition significantly changes SFEs, which correlates favorably with features like electronegativity variance, size effect, and heat of fusion. For fcc MPEAs, we also detail the changes in mechanical properties, such as bulk, Young’s, and shear moduli, as well as yield strength. A Labusch-type solute-solution-strengthening model was used to evaluate the temperature-dependent yield strength, which, combined with SFE, provides a design guide for high-performance alloys. We also analyzed the electronic structures of two down-selected alloys to reveal the underlying origin of optimal SFE and strength range in refractory-reinforced fcc MPEAs. These new insights on tuning SFEs and modifying composition-structure-property correlation in refractory- and copper-reinforced MPEAs by chemical disorder, provide a chemical route to tune twinning- and transformation-induced plasticity behavior. 
    more » « less
  4. Abstract Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures and diseases, caused by factors such as trauma, tumors, congenital anomalies, and aging. In such methods, the rate of scaffold biodegradation, transport of nutrients and growth factors, as well as removal of cell metabolic wastes at the site of injury are critical fluid-dynamics factors, affecting cell proliferation and ultimately tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms and factors associated with cell-seeded, scaffold-based bone tissue engineering. The overarching goal of this study is to contribute to patient-specific, clinical treatment of bone pathology. The overall objective of the work is to establish computational fluid dynamics (CFD) models to identify: (i) the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds and (ii) optimal triply periodic minimal surface (TPMS) scaffold designs toward cell-laden bone fracture treatment. In this study, 10 internal-flow and 10 external-flow CFD models were established using ANSYS, correspondingly based on 10 single-unit TPMS bone scaffold designs, where the geometry of each design was parametrically created using Rhinoceros 3D software. The influence of several design parameters, such as surface representation iteration, merged toggle iso value, and wall thickness, on geometry accuracy as well as computational time, was investigated in order to obtain computationally efficient and accurate CFD models. The fluid properties (such as density and dynamic viscosity) as well as the boundary conditions (such as no-slip condition, inlet flow velocity, and pressure outlet) of the CFD models were set based on clinical/research values reported in the literature as well as according to the fundamentals of internal/external Newtonian flow modeling. Several fluid characteristics, including flow velocity, flow pressure, and wall shear stress, were analyzed to observe material transport internally through and externally over the TPMS scaffold designs. Regarding the internal flow CFD modeling, it was observed that “P.W. Hybrid” (i.e., Design #7) had the highest-pressure output, with “Neovius” (i.e., Design #1) following second to it. These two designs have a relatively flatter surface area. In addition, “Schwarz P” (i.e., Design #2) was the lowest pressure output of all 10 TPMS designs. “Neovius” and “Schwarz P” had the highest and lowest values of wall shear stress. Besides, the velocity streamlines analysis showed an increase in velocity along the curved sections of the scaffolds’ geometry. Regarding the external flow CFD modeling, it was observed that “Neovius” yielded the highest-pressure output within the inlet section, which contains the area of the highest-pressure location. Furthermore, “Diamond” (i.e., Design #8) displayed having the highest values of wall shear stress due to the results of fluid interaction that accrues with complex curved structures. Also, when we look at designs like “Schwarz G”, the depiction of turbulent motion can be seen along the internal curved sections of the structure. As the external velocity streamlines decrease within the inner channels of the designs, this will lead to an increased pressure buildup due to the intrinsic interactions between the fluid with the walls. Overall, the outcomes of this study pave the way for optimal design and fabrication of complex, bone-like tissues with desired material transport properties for cell-laden, scaffold-based treatment of bone fractures. 
    more » « less
  5. A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function f of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes f and returns the result to both parties. There have been tremendous strides in efficiency over the past ten years, yet 2P-SFE protocols remain impractical for most real-time, online computations, particularly on modestly provisioned devices. Intel's Software Guard Extensions (SGX) provides hardware-protected execution environments, called enclaves, that may be viewed as trusted computation oracles. While SGX provides native CPU speed for secure computation, previous side-channel and micro-architecture attacks have demonstrated how security guarantees of enclaves can be compromised. In this paper, we explore a balanced approach to 2P-SFE on SGX-enabled processors by constructing a protocol for evaluating f relative to a partitioning of f. This approach alleviates the burden of trust on the enclave by allowing the protocol designer to choose which components should be evaluated within the enclave, and which via standard cryptographic techniques. We describe SGX-enabled SFE protocols (modeling the enclave as an oracle), and formalize the strongest-possible notion of 2P-SFE for our setting. We prove our protocol meets this notion when properly realized. We implement the protocol and apply it to two practical problems: privacy-preserving queries to a database, and a version of Dijkstra's algorithm for privacy-preserving navigation. Our evaluation shows that our SGX-enabled SFE scheme enjoys a 38x increase in performance over garbled-circuit-based SFE. Finally, we justify modeling of the enclave as an oracle by implementing protections against known side-channels. 
    more » « less