skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation and Fabrication of Soft Robots with Embedded Skeletons
Soft robots can be incredibly robust and safe but typically fail to match the strength and precision of rigid robots. This dichotomy between soft and rigid is recently starting to break down, with emerging research interest in hybrid soft-rigid robots. In this work, we draw inspiration from Nature, which achieves the best of both worlds by coupling soft and rigid tissues—like muscle and bone—to produce biological systems capable of both robustness and strength. We present foundational, general-purpose pipelines to simulate and fabricate cable-driven soft-rigid robots with embedded skeletons. We show that robots built using these methods can fluidly mimic biological systems while achieving greater force output and external load resistance than purely soft robots. Finally, we show how our simulation and fabrication pipelines can be leveraged to create more complex robots and do model- based control.  more » « less
Award ID(s):
1830901
PAR ID:
10356382
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE International Conference on Robotics and Automation
Page Range / eLocation ID:
5205 to 5211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft material robots are uniquely suited to address engineering challenges in extreme environments in new ways that traditional rigid robot embodiments cannot. Soft robot material flexibility, resistance to brittle fracture, low thermal conductivity, biostability, and self-healing capabilities present new solutions advantageous to specific environmental conditions. In this review, we examine the requirements for building and operating soft robots in various extreme environments, including within the human body, underwater, outer space, search and rescue sites, and confined spaces. We analyze the implementations of soft robotic devices, including actuators and sensors, which meet these requirements. Besides the structure of these devices, we explore ways to expand the use of soft robots in extreme environments with design optimization, control systems, and their future applications in educational and commercial products. We further discuss the current limitations of soft robots recognizing challenges to compliance, strength, and control. With this in mind, we present arguments for the future of robotics in which hybrid (rigid and soft) structures meet complex environmental needs. 
    more » « less
  2. The development of effective reduced order models for soft robots is paving the way toward the development of a new generation of model based techniques, which leverage classic rigid robot control. However, several soft robot features differentiate the soft-bodied case from the rigid-bodied one. First, soft robots are built to work in the environment, so the presence of obstacles in their path should always be explicitly accounted by their control systems. Second, due to the complex kinematics, the actuation of soft robots is mapped to the state space nonlinearly resulting in spaces with different sizes. Moreover, soft robots often include internal constraints and thus actuation is typically limited in the range of action and it is often unidirectional. This paper proposes a control pipeline to tackle the challenge of controlling soft robots with internal constraints in environments with obstacles. We show how the constraints on actuation can be propagated and integrated with geometrical constraints, taking into account physical limits imposed by the presence of obstacles. We present a hierarchical control architecture capable of handling these constraints, with which we are able to regulate the position in space of the tip of a soft robot with the discussed characteristics. 
    more » « less
  3. Abstract There are two major structural paradigms in robotics: soft machines, which are conformable, durable, and safe; and traditional rigid robots, which are fast, precise, and capable of applying high forces. Here, the paradigms are bridged by enabling soft machines to behave like traditional rigid robots on command. This task is accomplished via laminar jamming, a structural phenomenon in which a laminate of compliant strips becomes strongly coupled through friction when a pressure gradient is applied, causing dramatic changes in mechanical properties. Rigorous analytical and finite element models of laminar jamming are developed, and jamming structures are experimentally characterized to show that the models are highly accurate. Then jamming structures are integrated into soft machines to enable them to selectively exhibit the stiffness, damping, and kinematics of traditional rigid robots. The models allow jamming structures to efficiently meet arbitrary performance specifications, and the physical demonstrations illustrate how to construct systems that can behave like either soft machines or traditional rigid robots at will, such as continuum manipulators that can rapidly have joints appear and disappear. This study aims to foster a new generation of mechanically versatile machines and structures that cannot simply be classified as “soft” or “rigid.” 
    more » « less
  4. null (Ed.)
    The field of soft robotics is grounded on the idea that, due to their inherent compliance, soft robots can safely interact with the environment. Thus, the development of effective planning and control pipelines for soft robots should incorporate reliable robot-environment interaction models. This strategy enables soft robots to effectively exploit contacts to autonomously navigate and accomplish tasks in the environment. However, for a class of soft robots, namely vine-inspired, tip-extending or "vine" robots, such interaction models and the resulting planning and control strategies do not exist. In this paper, we analyze the behavior of vine robots interacting with their environment and propose an obstacle-interaction model that characterizes the bending and wrinkling deformation induced by the environment. Starting from this, we devise a novel obstacle-interaction planning method for these robots. We show how obstacle interactions can be effectively leveraged to enlarge the set of reachable workspace for the robot tip, and verify our findings with both simulated and real experiments. Our work improves the capabilities of this new class of soft robot, helping to advance the field of soft robotics. 
    more » « less
  5. For robot arms to perform everyday tasks in unstructured environments, these robots must be able to manipulate a diverse range of objects. Today’s robots often grasp objects with either soft grippers or rigid end-effectors. However, purely rigid or purely soft grippers have fundamental limitations as follows: soft grippers struggle with irregular heavy objects, whereas rigid grippers often cannot grasp small numerous items. In this article, we therefore introduce RISOs, a mechanics and controls approach for unifying traditional RIgid end-effectors with a novel class of SOft adhesives. When grasping an object, RISOs can use either the rigid end-effector (pinching the item between nondeformable fingers) and/or the soft materials (attaching and releasing items with switchable adhesives). This enhances manipulation capabilities by combining and decoupling rigid and soft mechanisms. With RISOs, robots can perform grasps along a spectrum from fully rigid, to fully soft, to rigid-soft, enabling real-time object manipulation across a 1.5 million times range in weight (from 2 mg to 2.9 kg). To develop RISOs, we first model and characterize the soft switchable adhesives. We then mount sheets of these soft adhesives on the surfaces of rigid end-effectors and develop control strategies that make it easier for robot arms and human operators to utilize RISOs. The resulting RISO grippers were able to pick up, carry, and release a larger set of objects than existing grippers, and participants also preferred using RISO. Overall, our experimental and user study results suggest that RISOs provide an exceptional gripper range in both capacity and object diversity. 
    more » « less