skip to main content


Title: Characterization of sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements with 3D hybrid particle-in-cell code

Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100-μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography.

 
more » « less
Award ID(s):
1707357
NSF-PAR ID:
10440318
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
9
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0   g cm − 3 , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. 
    more » « less
  2. High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam. 
    more » « less
  3. Material in HED regimes are at very high pressures and temperatures but can often still be modeled in the plasma-fluid approximation. Historically HED regimes were created using large laser/ion- beam drivers heating solid targets. Exciting data was obtained from these single shot experiments. In recent years there has been a shift to obtain HED related data from a large number of shots by using high-repetition-rate drivers. For high-repetition-rate experiments a series of droplet targets are often used to have a fresh target/droplet for each shot. However, one must make sure that target debris from the previous shot does not degrade the target for subsequent shots. This is a challenging CFD problem as one needs to model the initial dynamics of the heated droplet and the subsequent interaction with the following droplets. We use the CFD modeling code PISALE to study this complex problem. We discuss results for liquid hydrogen droplets heated by an x-ray free electron laser (XFEL). We first show 2D results for single heated droplet then 3D results for a heated droplet interacting with two unheated droplets. 
    more » « less
  4. Abstract

    Flare-associated quasiperiodic pulsations (QPPs) in radio and X-ray wavelengths, particularly those related to nonthermal electrons, contain important information about the energy release and transport processes during flares. However, the paucity of spatially resolved observations of such QPPs with a fast time cadence has been an obstacle for us to further understand their physical nature. Here, we report observations of such a QPP event that occurred during the impulsive phase of a C1.8-class eruptive solar flare using radio imaging spectroscopy data from the Karl G. Jansky Very Large Array (VLA) and complementary X-ray imaging and spectroscopy data. The radio QPPs, observed by the VLA in the 1–2 GHz with a subsecond cadence, are shown as three spatially distinct sources with different physical characteristics. Two radio sources are located near the conjugate footpoints of the erupting magnetic flux rope with opposite senses of polarization. One of the sources displays a QPP behavior with a ∼5 s period. The third radio source, located at the top of the postflare arcade, coincides with the location of an X-ray source and shares a similar period of ∼25–45 s. We show that the two oppositely polarized radio sources are likely due to coherent electron cyclotron maser emission. On the other hand, the looptop QPP source, observed in both radio and X-rays, is consistent with incoherent gyrosynchrotron and bremsstrahlung emission, respectively. We conclude that the concurrent, but spatially distinct QPP sources must involve multiple mechanisms which operate in different magnetic loop systems and at different periods.

     
    more » « less
  5. ABSTRACT

    The shell of the classical nova V5668 Sgr was resolved by ALMA at the frequency of 230 GHz 927 d after eruption, showing that most of the continuum bremsstrahlung emission originates in clumps with diameter smaller than 1015 cm. Using Very Large Array radio observations, obtained between days 2 and 1744 after eruption, at frequencies between 1 and 35 GHz, we modelled the nova spectra, assuming first that the shell is formed by a fixed number of identical clumps, and afterwards with the clumps having a power-law distribution of sizes, and were able to obtain the clump’s physical parameters (radius, density, and temperature). We found that the density of the clumps decreases linearly with the increase of the shell’s volume, which is compatible with the existence of a second media, hotter and thinner, in pressure equilibrium with the clumps. We show that this thinner media could be responsible for the emission of the hard X-rays observed at the early times of the nova eruption, and that the clump’s temperature evolution follows that of the super-soft X-ray luminosity. We propose that the clumps were formed in the radiative shock produced by the collision of the fast wind of the white dwarf after eruption, with the slower velocity of the thermonuclear ejecta. From the total mass of the clumps, the observed expansion velocity and thermonuclear explosion models, we obtained an approximate value of 1.25 M⊙ for the mass of the white dwarf, a central temperature of 107 K and an accretion rate from the secondary star of 10−9–10−8 M⊙ yr−1.

     
    more » « less