skip to main content


Title: Ultrafast time-resolved 2D imaging of laser-driven fast electron transport in solid density matter using an x-ray free electron laser
High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam.  more » « less
Award ID(s):
2010502
NSF-PAR ID:
10431957
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
94
Issue:
3
ISSN:
0034-6748
Page Range / eLocation ID:
033511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Material in HED regimes are at very high pressures and temperatures but can often still be modeled in the plasma-fluid approximation. Historically HED regimes were created using large laser/ion- beam drivers heating solid targets. Exciting data was obtained from these single shot experiments. In recent years there has been a shift to obtain HED related data from a large number of shots by using high-repetition-rate drivers. For high-repetition-rate experiments a series of droplet targets are often used to have a fresh target/droplet for each shot. However, one must make sure that target debris from the previous shot does not degrade the target for subsequent shots. This is a challenging CFD problem as one needs to model the initial dynamics of the heated droplet and the subsequent interaction with the following droplets. We use the CFD modeling code PISALE to study this complex problem. We discuss results for liquid hydrogen droplets heated by an x-ray free electron laser (XFEL). We first show 2D results for single heated droplet then 3D results for a heated droplet interacting with two unheated droplets. 
    more » « less
  2. Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100-μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography.

     
    more » « less
  3. Spatial and energy resolutions of state-of-the-art transmission electron microscopes (TEMs) have surpassed 50 pm and 5 meV. However, with respect to the time domain, even the fastest detectors combined with the brightest sources may only be able to reach the microsecond timescale. Thus, conventional methods are incapable of resolving myriad fundamental ultrafast ( i.e., attosecond to picosecond) atomic-scale dynamics. The successful demonstration of femtosecond (fs) laser-based (LB) ultrafast transmission electron microscopy (UEM) nearly 20 years ago provided a means to span this nearly 10-order-of-magnitude temporal gap. While nanometer-picosecond UEM studies of dynamics are now well established, ultrafast Å-scale imaging has gone largely unrealized. Further, while instrument development has rightly been an emphasis, and while new modalities and uses of pulsed-beam TEM continue to emerge, the overall chemical and materials application space has been only modestly explored to date. In this Perspectives article, we argue that these apparent shortfalls can be attributed to a simple lack of data and detail. We speculate that present work and continued growth of the field will ultimately lead to the realization that Å-scale fs dynamics can indeed be imaged with minimally modified UEM instrumentation and with repetition rates ( f rep ) below - and perhaps even well below - 1 MHz. We further argue that use of low f rep , whether for LB UEM or for chopped/bunched beams, significantly expands the accessible application space. This calls for systematically establishing modality-specific limits so that especially promising technologies can be pursued, thus ultimately facilitating broader adoption as individual instrument capabilities expand. 
    more » « less
  4. Abstract

    In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV m−1. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 m. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by 50 nm-rad normalized emittances. The emittance, we note, is the effective area in transverse phase space (x,px/mec) or (y,py/mec) occupied by the beam distribution, and it is relevant to achievable beam sizes as well as setting a limit on FEL wavelength. These beams, when injected into innovative, short-period (1–10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine—including the imaging of virus particles—which may profit from this new model of performing XFEL science.

     
    more » « less
  5. Abstract

    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.

     
    more » « less