skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Activity Recognition in Older Adults with Training Data from Younger Adults: Preliminary Results on in Vivo Smartwatch Sensor Data
Self-tracking using commodity wearables such as smartwatches can help older adults reduce sedentary behaviors and engage in physical activity. However, activity recognition applications that are typically deployed in these wearables tend to be trained on datasets that best represent younger adults. We explore how our activity recognition model, a hybrid of long short-term memory and convolutional layers, pre-trained on smartwatch data from younger adults, performs on older adult data. We report results on week-long data from two older adults collected in a preliminary study in the wild with ground-truth annotations based on activPAL, a thigh-worn sensor. We find that activity recognition for older adults remains challenging even when comparing our model’s performance to state of the art deployed models such as the Google Activity Recognition API. More so, we show that models trained on younger adults tend to perform worse on older adults.  more » « less
Award ID(s):
1955568
PAR ID:
10356482
Author(s) / Creator(s):
Date Published:
Journal Name:
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '21)
Page Range / eLocation ID:
1 - 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current activity tracking technologies are largely trained on younger adults’ data, which can lead to solutions that are not well-suited for older adults. To build activity trackers for older adults, it is crucial to collect training data with them. To this end, we examine the feasibility and challenges with older adults in collecting activity labels by leveraging speech. Specifically, we built MyMove, a speech-based smartwatch app to facilitate the in-situ labeling with a low capture burden. We conducted a 7-day deployment study, where 13 older adults collected their activity labels and smartwatch sensor data, while wearing a thigh-worn activity monitor. Participants were highly engaged, capturing 1,224 verbal reports in total. We extracted 1,885 activities with corresponding effort level and timespan, and examined the usefulness of these reports as activity labels. We discuss the implications of our approach and the collected dataset in supporting older adults through personalized activity tracking technologies. 
    more » « less
  2. Older adults may experience certain forms of cognitive decline, but some forms of semantic memory remain intact in older age. To address how metaphor comprehension changes with age and whether metaphor comprehension relies more heavily on analogical reasoning (supported by fluid intelligence) or on conceptual combination (supported by crystalized intelligence), we compared performance of younger and older adults. In two experiments, healthy older adults (54–88 years) scored lower on a measure of fluid intelligence (Ravens Progressive Matrices) but higher on a measure of crystalized intelligence (Mill Hill Vocabulary Test) relative to younger adults (18–34 years). Groups were equally successful in comprehending relatively easy metaphors (Study 1), but older adults showed a striking advantage over younger adults for novel literary metaphors (Study 2). Mixed-effects modeling showed that measures of fluid and crystalized intelligence each made separable contributions to metaphor comprehension for both groups, but older adults relied more on crystalized intelligence than did younger adults. These age-related dissociations clarify cognitive effects of aging and highlight the importance of crystalized intelligence for metaphor comprehension in both younger and older adults. 
    more » « less
  3. Background Research has shown the feasibility of human activity recognition using wearable accelerometer devices. Different studies have used varying numbers and placements for data collection using sensors. Objective This study aims to compare accuracy performance between multiple and variable placements of accelerometer devices in categorizing the type of physical activity and corresponding energy expenditure in older adults. Methods In total, 93 participants (mean age 72.2 years, SD 7.1) completed a total of 32 activities of daily life in a laboratory setting. Activities were classified as sedentary versus nonsedentary, locomotion versus nonlocomotion, and lifestyle versus nonlifestyle activities (eg, leisure walk vs computer work). A portable metabolic unit was worn during each activity to measure metabolic equivalents (METs). Accelerometers were placed on 5 different body positions: wrist, hip, ankle, upper arm, and thigh. Accelerometer data from each body position and combinations of positions were used to develop random forest models to assess activity category recognition accuracy and MET estimation. Results Model performance for both MET estimation and activity category recognition were strengthened with the use of additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03-0.09 MET increase in prediction error compared with wearing all 5 devices. Balanced accuracy showed similar trends with slight decreases in balanced accuracy for the detection of locomotion (balanced accuracy decrease range 0-0.01), sedentary (balanced accuracy decrease range 0.05-0.13), and lifestyle activities (balanced accuracy decrease range 0.04-0.08) compared with all 5 placements. The accuracy of recognizing activity categories increased with additional placements (accuracy decrease range 0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition. Conclusions Additional accelerometer devices slightly enhance activity recognition accuracy and MET estimation in older adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear to be sufficient for estimating energy expenditure and activity category recognition in older adults. 
    more » « less
  4. Abstract Listening to music is an enjoyable behaviour that engages multiple networks of brain regions. As such, the act of music listening may offer a way to interrogate network activity, and to examine the reconfigurations of brain networks that have been observed in healthy aging. The present study is an exploratory examination of brain network dynamics during music listening in healthy older and younger adults. Network measures were extracted and analyzed together with behavioural data using a combination of hidden Markov modelling and partial least squares. We found age- and preference-related differences in fMRI data collected during music listening in healthy younger and older adults. Both age groups showed higher occupancy (the proportion of time a network was active) in a temporal-mesolimbic network while listening to self-selected music. Activity in this network was strongly positively correlated with liking and familiarity ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher degree of correlation between liking and familiarity ratings consistent with past behavioural work on age-related dedifferentiation. We conclude that, while older adults do show network and behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network is relatively robust to dedifferentiation. These findings may help explain how music listening remains meaningful and rewarding in old age. 
    more » « less
  5. How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts. 
    more » « less