skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955568

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Prolonged sedentary behavior poses significant health risks, calling for interventions that promote active lifestyles. For older adults, every physical activity, no matter how small or significant, plays a vital role in their quality of life. However, many interventions aimed at reducing sedentary behavior have overlooked the unique needs and preferences of older adults. In this study, we explore design opportunities for supporting behavior displacement---replacing sedentary time with active movements---as a potential strategy for intervening sedentary time among older adults. Through a 7-day diary study and interviews with 13 participants, we uncovered key factors, such as attention demand, productivity and quality of activities, physical fatigue, as well as social norms, that influence their decisions to engage in displacement. We also identified sequential and concurrent displacement strategies and the contexts in which each was employed. Our findings highlight the need for designing personalized, adaptive interventions that respect the diverse preferences and agency of older adults. 
    more » « less
    Free, publicly-accessible full text available September 3, 2026
  2. Tracking activities holds great potential to improve the well-being of older adults, yet the accuracy of activity trackers for this demographic remains in question. Evaluating this accuracy requires ground-truth data directly from older adults, which has largely been gathered in controlled laboratory settings or labeled by researchers. Moreover, considering the diversity in older adults' activity engagement and tracking preferences, personalized activity tracking appears necessary. We demonstrate that older adults can benefit from personalized activity trackers by showing that cadence thresholds for stepping intensities vary within this group. However, collecting ground-truth data from older adults in real-world settings poses unique challenges. This paper examines two sources of ground-truth labels for the smartwatch Inertial Measurement Unit (IMU) data collected with older adults. Using verbal self-reports and a thigh-worn activity tracker, we assess their viability as ground-truth sources in natural settings. Additionally, we evaluate the costs and benefits of triangulating these sources as a ground-truth proxy. Our findings reveal two main costs: data shrinkage and notable effort from both contributors and data stewards. Simultaneously, we observe improved data quality and a greater ability to identify error sources when evaluating a trained model. 
    more » « less
    Free, publicly-accessible full text available June 9, 2026
  3. Much research on older people with memory concerns is focused on tracking and informed by the priorities of others. In this paper, we seek to understand the potential that people with memory concerns see in tracking. We conducted interviews with 29 participants with concerns about their memory and engaged in an affective writing approach. We find a range of potentials that can be traced to how participants are already self-tracking. Emotions associated with these potentials vary: from acceptance to resistance, and positive anticipation to aversion. Participants are emotionally motivated to foreclose possibilities in some instances and keep them open in others. While individual and unique, potential is structured by forces that include individual routines, relationships with others, and macro-level institutions and cultural contexts. We reflect on these findings in the context of research on self-tracking with older adults, designing with ambiguity, and forces that structure the experience of living with memory concerns. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  4. Emphasizing problem formulation in AI literacy activities with children is vital, yet we lack empirical studies on their structure and affordances. We propose that participatory design involving teachable machines facilitates problem formulation activities. To test this, we integrated problem reduction heuristics into storyboarding and invited a university-based intergenerational design team of 10 children (ages 8-13) and 9 adults to co-design a teachable machine. We find that children draw from personal experiences when formulating AI problems; they assume voice and video capabilities, explore diverse machine learning approaches, and plan for error handling. Their ideas promote human involvement in AI, though some are drawn to more autonomous systems. Their designs prioritize values like capability, logic, helpfulness, responsibility, and obedience, and a preference for a comfortable life, family security, inner harmony, and excitement as end-states. We conclude by discussing how these results can inform the design of future participatory AI activities. 
    more » « less
  5. Activity tracking has the potential to promote active lifestyles among older adults. However, current activity tracking technologies may inadvertently perpetuate ageism by focusing on age-related health risks. Advocating for a personalized approach in activity tracking technology, we sought to understand what activities older adults find meaningful to track and the underlying values of those activities. We conducted a reflective interview study following a 7-day activity journaling with 13 participants. We identified various underlying values motivating participants to track activities they deemed meaningful. These values, whether competing or aligned, shape the desirability of activities. Older adults appreciate low-exertion activities, but they are difficult to track. We discuss how these activities can become central in designing activity tracking systems. Our research offers insights for creating value-driven, personalized activity trackers that resonate more fully with the meaningful activities of older adults. 
    more » « less
  6. Current activity tracking technologies are largely trained on younger adults’ data, which can lead to solutions that are not well-suited for older adults. To build activity trackers for older adults, it is crucial to collect training data with them. To this end, we examine the feasibility and challenges with older adults in collecting activity labels by leveraging speech. Specifically, we built MyMove, a speech-based smartwatch app to facilitate the in-situ labeling with a low capture burden. We conducted a 7-day deployment study, where 13 older adults collected their activity labels and smartwatch sensor data, while wearing a thigh-worn activity monitor. Participants were highly engaged, capturing 1,224 verbal reports in total. We extracted 1,885 activities with corresponding effort level and timespan, and examined the usefulness of these reports as activity labels. We discuss the implications of our approach and the collected dataset in supporting older adults through personalized activity tracking technologies. 
    more » « less
  7. Self-tracking using commodity wearables such as smartwatches can help older adults reduce sedentary behaviors and engage in physical activity. However, activity recognition applications that are typically deployed in these wearables tend to be trained on datasets that best represent younger adults. We explore how our activity recognition model, a hybrid of long short-term memory and convolutional layers, pre-trained on smartwatch data from younger adults, performs on older adult data. We report results on week-long data from two older adults collected in a preliminary study in the wild with ground-truth annotations based on activPAL, a thigh-worn sensor. We find that activity recognition for older adults remains challenging even when comparing our model’s performance to state of the art deployed models such as the Google Activity Recognition API. More so, we show that models trained on younger adults tend to perform worse on older adults. 
    more » « less