Humans, even from infancy, are capable of unsupervised (“statistical”) learning of linguistic information. However, it remains unclear which of the myriad algorithms for unsupervised learning captures human abilities. This matters because unsupervised learning algorithms vary greatly in how much can be learned how quickly. Thus, which algorithm(s) humans use may place a strong bound on how much of language can actually be learned in an unsupervised fashion. As a step towards more precisely characterizing human unsupervised learning capabilities, we quantitatively synthesize the literature on adult unsupervised (“statistical”) word segmentation. Unfortunately, most confidence intervals were very large, and few moderators were found to be significant. These findings are consistent with prior work suggesting low power and precision in the literature. Constraining theory will require more, higher-powered studies.
more »
« less
Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering
We propose an unsupervised learning method that exploits client heterogeneity to enable privacy preserving, SOTA performance unsupervised federated learning.
more »
« less
- Award ID(s):
- 2008151
- PAR ID:
- 10356483
- Date Published:
- Journal Name:
- Proc. International Conference on Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Humans, even from infancy, are capable of unsupervised (“sta- tistical”) learning of linguistic information. However, it re- mains unclear which of the myriad algorithms for unsuper- vised learning captures human abilities. This matters because unsupervised learning algorithms vary greatly in how much can be learned how quickly. Thus, which algorithm(s) humans use may place a strong bound on how much of language can ac- tually be learned in an unsupervised fashion. As a step towards more precisely characterizing human unsupervised learning capabilities, we quantitatively synthesize the literature on adult unsupervised (“statistical”) word segmentation. Unfortunately, most confidence intervals were very large, and few moderators were found to be significant. These findings are consistent with prior work suggesting low power and precision in the litera- ture. Constraining theory will require more, higher-powered studies.more » « less
-
We introduce a neural network framework, utilizing adversarial learning to partition an image into two cuts, with one cut falling into a reference distribution provided by the user. This concept tackles the task of unsupervised anomaly segmentation, which has attracted increasing attention in recent years due to their broad applications in tasks with unlabelled data. This Adversarial-based Selective Cutting network (ASC-Net) bridges the two domains of cluster-based deep learning methods and adversarial-based anomaly/novelty detection algorithms. We evaluate this unsupervised learning model on BraTS brain tumor segmentation, LiTS liver lesion segmentation, and MS-SEG2015 segmentation tasks. Compared to existing methods like the AnoGAN family, our model demonstrates tremendous performance gains in unsupervised anomaly segmentation tasks. Although there is still room to further improve performance compared to supervised learning algorithms, the promising experimental results shed light on building an unsupervised learning algorithm using user-defined knowledge.more » « less
-
In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning.more » « less
-
In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning.more » « less
An official website of the United States government

