Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287.
more »
« less
Search for Continuous Gravitational-wave Signals in Pulsar Timing Residuals: A New Scalable Approach with Diffusive Nested Sampling
Abstract Detecting continuous nanohertz gravitational waves (GWs) generated by individual close binaries of supermassive black holes (CB-SMBHs) is one of the primary objectives of pulsar timing arrays (PTAs). The detection sensitivity is slated to increase significantly as the number of well-timed millisecond pulsars will increase by more than an order of magnitude with the advent of next-generation radio telescopes. Currently, the Bayesian analysis pipeline using parallel tempering Markov Chain Monte Carlo has been applied in multiple studies for CB-SMBH searches, but it may be challenged by the high dimensionality of the parameter space for future large-scale PTAs. One solution is to reduce the dimensionality by maximizing or marginalizing over uninformative parameters semianalytically, but it is not clear whether this approach can be extended to more complex signal models without making overly simplified assumptions. Recently, the method of diffusive nested (DNest) sampling has shown capability in coping with high dimensionality and multimodality effectively in Bayesian analysis. In this paper, we apply DNest to search for continuous GWs in simulated pulsar timing residuals and find that it performs well in terms of accuracy, robustness, and efficiency for a PTA including ( 10 2 ) pulsars. DNest also allows a simultaneous search of multiple sources elegantly, which demonstrates its scalability and general applicability. Our results show that it is convenient and also highly beneficial to include DNest in current toolboxes of PTA analysis.
more »
« less
- Award ID(s):
- 2018900
- PAR ID:
- 10356726
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis. Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous gravitational wave signals. Next, we present a ranking that minimizes the coupling between spatial correlation signatures, namely monopolar, dipolar, and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that an optimal selection leads to an increase in the log-Bayes factor two times steeper than a random selection for the hypothesis test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic European PTA (EPTA) data set, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is 89 % of the total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array. We expect these selection methods to play a crucial role in future PTA data combinations.more » « less
-
Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.more » « less
-
Abstract We answer frequently asked questions (FAQs) about the Hellings and Downs correlation curve—the ‘smoking-gun’ signature that pulsar timing arrays (PTAs) have detected gravitational waves (GWs). Many of these questions arise from inadvertently applying intuition about the effects of GWs on LIGO-like detectors to the case of pulsar timing, where not all of it applies. This is because Earth-based detectors, like LIGO and Virgo, have arms that are short (km scale) compared to the wavelengths of the GWs that they detect ( –104km). In contrast, PTAs respond to GWs whose wavelengths (tens of light-years) are much shorter than their arms (a typical PTA pulsar is hundreds to thousands of light-years from Earth). To demonstrate this, we calculate the time delay induced by a passing GW along an Earth-pulsar baseline (a ‘one-arm, one-way’ detector) and compare it in the ‘short-arm’ (LIGO-like) and ‘long-arm’ (PTA) limits. This provides qualitative and quantitative answers to many questions about the Hellings and Downs curve. The resulting FAQ sheet should help in understanding the ‘evidence for GWs’ recently announced by several PTA collaborations.more » « less
-
Pulsar timing arrays (PTAs) are ensembles of millisecond pulsars observed for years to decades. The primary goal of PTAs is to study gravitational-wave astronomy at nanohertz frequencies, with secondary goals of undertaking other fundamental tests of physics and astronomy. Recently, compelling evidence has emerged in established PTA experiments for the presence of a gravitational-wave background. To accelerate a confident detection of such a signal and then study gravitational-wave emitting sources, it is necessary to observe a larger number of millisecond pulsars to greater timing precision. The SKA telescopes, which will be a factor of three to four greater in sensitivity compared to any other southern hemisphere facility, is poised to make such an impact. In this chapter, we motivate an SKAO pulsar timing array (SKAO PTA) experiment. We discuss the classes of gravitational waves present in PTA observations and how an SKAO PTA can detect and study them. We then describe the sources that can produce these signals. We discuss the astrophysical noise sources that must be mitigated to undertake the most sensitive searches. We then describe a realistic PTA experiment implemented with the SKA and place it in context alongside other PTA experiments likely ongoing in the 2030s. We describe the techniques necessary to search for gravitational waves in the SKAO PTA and motivate how very long baseline interferometry can improve the sensitivity of an SKAO PTA. The SKAO PTA will provide a view of the Universe complementary to those of the other large facilities of the 2030s.more » « less
An official website of the United States government

