skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Horizontal Variations of Nocturnal Temperature and Turbulence Over Microtopography
Abstract Nocturnal spatial variation of temperature, wind, and turbulence over microtopography is generally poorly understood. Low amplitude microtopography covers much of the Earth’s surface and, with very stable conditions, can produce significant spatial variations of temperature and turbulence. We examine such variations over gentle terrain that include two shallow gullies that feed into a small valley. The gullies are covered by a sub-network of seven flux stations that is embedded within a larger network that covers the valley. The measurements indicate that gullies of only 2–5-m depth and 100-m width can often lead to spatial variations of temperature of several kelvin or more. Such variations depend on ambient wind speed and direction and the near-surface stratification. We investigate the surprising importance of microscale lee turbulence occurring over the gentle microtopography with slopes of only 5%. Near-surface stratification unexpectedly tends to increase with surface elevation on the slopes. We examine the potential causes of this puzzling behaviour of the near-surface stratification.  more » « less
Award ID(s):
1945587
PAR ID:
10356773
Author(s) / Creator(s):
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
184
Issue:
3
ISSN:
0006-8314
Page Range / eLocation ID:
401 to 422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines nocturnal temperature changes on time‐scales of 5–60 min over gentle terrain. Such temperature variations are often important after the early evening period of rapid cooling and can lead to large temporary warming or enhanced cooling. The time–space structure of temperature changes is examined statistically with a network of flux stations over gentle topography. Large temperature changes are often associated with coherent propagating modes and associated temporary reduction or elimination of the valley cold pool, local drainage flows, and lee turbulence. The largest variations of temperature with time occur for intermediate wind speeds. Low wind speeds correspond to greater spatial variability of temperature but less time dependence. Two nondimensional ratios are developed to represent the relative importance of temporal and spatial variability. 
    more » « less
  2. Abstract Terrain slopes with and without upslope large surface roughness impact downstream shear‐generated turbulence differently in the nighttime stable boundary layer (SBL). These differences can be identified through variations in the relationship between turbulence and wind speed at a given height, known as the HOckey STick (HOST) transition, as compared to the HOST relationship over flat terrain. The transport of cold surface air from elevated uniform terrain reduces downstream air temperature not much air stratification. As terrain slope rises, the increasing cold and heavy air enhances downstream hydrostatic imbalance, resulting in increasing turbulence for a given wind speed. That is, the rate of turbulence increase with wind speed from downslope flow is independent of terrain slope. Upslope large surface roughness elements enhance vertical turbulent mixing, elevating cold surface air from the terrain. Horizontal transport of this elevated, cold, turbulent air layer reduces the downstream upper warm air temperature. Benefiting from the progressive reduction of downstream stable stratification with increasing height in the SBL, wind shear can effectively generate strong turbulence. In addition to the turbulence enhancement from the cold downslope flow, the rate of turbulence increase with wind speed is elevated. This study demonstrates key physical mechanisms for turbulence generation captured by the HOST relationship. It also highlights the influence of terrain features on these mechanisms through deviations from the HOST relationship over flat terrain. 
    more » « less
  3. Our study examines the horizontal variation of the nocturnal surface air temperature by analyzing measurements from four contrasting networks of stations with generally modest topography. The horizontal extent of the networks ranges from 1 to 23 km. For each network, we investigate the general relationship of the horizontal variation of temperature to the wind speed, wind direction, near-surface stratification, and turbulence. As an example, the horizontal variation of temperature generally increases with increasing stratification and decreases with increasing wind speed. However, quantitative details vary significantly between the networks. Needed changes of the observational strategy are discussed. 
    more » « less
  4. Abstract The vertical structure of the observed stable boundary layer often deviates substantially from textbook profiles. Even over flat homogeneous surfaces, the turbulence may not be completely related to the surface conditions and instead generated by elevated sources of turbulence such as low-level jets and transient modes. In stable conditions, even modest surface heterogeneity can alter the vertical structure of the stable boundary layer. With clear skies and low wind speeds, cold-air drainage is sometimes generated by very weak slopes and induces a variety of different vertical structures. Our study examines the vertical structure of the boundary layer at three contrasting tower sites. We emphasize low wind speeds with strong stratification. At a given site, the vertical structure may be sensitive to the surface wind direction. Classification of vertical structures is posed primarily in terms of the profile of the heat flux. The nocturnal boundary layer assumes a variety of vertical structures, which can often be roughly viewed as layering of the heat-flux divergence (convergence). The correlation coefficient between the temperature and vertical velocity fluctuations provides valuable additional information for classification of the vertical structure. 
    more » « less
  5. Abstract The middepth ocean temperature profile was found by Munk in 1966 to agree with an exponential profile and shown to be consistent with a vertical advective–diffusive balance. However, tracer release experiments show that vertical diffusivity in the middepth ocean is an order of magnitude too small to explain the observed 1-km exponential scale. Alternative mechanisms suggested that nearly all middepth water upwells adiabatically in the Southern Ocean (SO). In this picture, SO eddies and wind set SO isopycnal slopes and therefore determine a nonvanishing middepth interior stratification even in the adiabatic limit. The effect of SO eddies on SO isopycnal slopes can be understood via either a marginal criticality condition or a near-vanishing SO residual deep overturning condition in the adiabatic limit. We examine the interplay between SO dynamics and interior mixing in setting the exponential profiles of σ 2 and ∂ z σ 2 . We use eddy-permitting numerical simulations, in which we artificially change the diapycnal mixing only away from the SO. We find that SO isopycnal slopes change in response to changes in the interior diapycnal mixing even when the wind forcing is constant, consistent with previous studies (that did not address these near-exponential profiles). However, in the limit of small interior mixing, the interior ∂ z σ 2 profile is not exponential, suggesting that SO processes alone, in an adiabatic limit, do not lead to the observed near-exponential structures of such profiles. The results suggest that while SO wind and eddies contribute to the nonvanishing middepth interior stratification, the exponential shape of the ∂ z σ 2 profiles must also involve interior diapycnal mixing. 
    more » « less