skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The association of depression and apathy with Alzheimer’s disease biomarkers in a cross-cultural sample
Cross-cultural differences in the association between neuropsychiatric symptoms and Alzheimer's disease (AD) biomarkers are not well understood. This study aimed to (1) compare depressive symptoms and frequency of reported apathy across diagnostic groups of participants with normal cognition (CN), mild cognitive impairment (MCI), and dementia, as well as ethnic groups of Hispanic Americans (HA) and European Americans (EA); (2) evaluate the relationship between depression and apathy with A beta deposition and brain atrophy. Statistical analyses included ANCOVAs, chi-squared, nonparametric tests, correlations, and logistic regressions. Higher scores on the Geriatric Depression Scale (GDS-15) were reported in the MCI and dementia cohorts, while older age corresponded with lower GDS-15 scores. The frequency of apathy differed across diagnoses within each ethnicity, but not when comparing ethnic groups. Reduced volume in the rostral anterior cingulate cortex (ACC) significantly correlated with and predicted apathy for the total sample after applying false discovery rate corrections (FDR), controlling for covariates. The EA group separately demonstrated a significant negative relationship between apathy and superior frontal volume, while for HA, there was a relationship between rostral ACC volume and apathy. Apathy corresponded with higher A beta levels for the total sample and for the CN and HA groups.  more » « less
Award ID(s):
1920182
PAR ID:
10356859
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Neuropsychology: Adult
ISSN:
2327-9095
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective: The interaction of ethnicity, progression of cognitive impairment, and neuroimaging biomarkers of Alzheimer’s Disease remains unclear. We investigated the stability in cognitive status classification (cognitively normal [CN] and mild cognitive impairment [MCI]) of 209 participants (124 Hispanics/Latinos and 85 European Americans). Methods: Biomarkers (structural MRI and amyloid PET scans) were compared between Hispanic/Latino and European American individuals who presented a change in cognitive diagnosis during the second or third follow-up and those who remained stable over time. Results: There were no significant differences in biomarkers between ethnic groups in any of the diagnostic categories. The frequency of CN and MCI participants who were progressors (progressed to a more severe cognitive diagnosis at follow-up) and non-progressors (either stable through follow-ups or unstable [progressed but later reverted to a diagnosis of CN]) did not significantly differ across ethnic groups. Progressors had greater atrophy in the hippocampus (HP) and entorhinal cortex (ERC) at baseline compared to unstable non-progressors (reverters) for both ethnic groups, and more significant ERC atrophy was observed among progressors of the Hispanic/Latino group. For European Americans diagnosed with MCI, there were 60% more progressors than reverters (reverted from MCI to CN), while among Hispanics/Latinos with MCI, there were 7% more reverters than progressors. Binomial logistic regressions predicting progression, including brain biomarkers, MMSE, and ethnicity, demonstrated that only MMSE was a predictor for CN participants at baseline. However, for MCI participants at baseline, HP atrophy, ERC atrophy, and MMSE predicted progression. 
    more » « less
  2. Abstract We examined the association between bilingualism, executive function (EF), and brain volume in older monolinguals and bilinguals who spoke English, Spanish, or both, and were cognitively normal (CN) or diagnosed with Mild Cognitive Impairment (MCI) or dementia. Gray matter volume (GMV) was higher in language and EF brain regions among bilinguals, but no differences were found in memory regions. Neuropsychological performance did not vary across language groups over time; however, bilinguals exhibited reduced Stroop interference and lower scores on Digit Span Backwards and category fluency. Higher scores on Digit Span Backwards were associated with a younger age of English acquisition, and a greater degree of balanced bilingualism was associated with lower scores in category fluency. The initial age of cognitive decline did not differ between language groups. The influence of bilingualism appears to be reflected in increased GMV in language and EF regions, and to a lesser degree, in EF. 
    more » « less
  3. Abstract Alzheimer’s disease (AD) is a neurogenerative condition characterized by sharp cognitive decline with no confirmed effective treatment or cure. This makes it critically important to identify the symptoms of Alzheimer’s disease in its early stages before significant cognitive deterioration has taken hold and even before any brain morphology and neuropathology are noticeable. In this study, five different multimodal deep neural networks (MDNN), with different architectures, in search of an optimal model for predicting the cognitive test scores for the Mini-Mental State Examination (MMSE) and the modified Alzheimer’s Disease Assessment Scale (ADAS-CoG13) over a span of 60 months (5 years). The multimodal data utilized to train and test the proposed models were obtained from the Alzheimer’s Disease Neuroimaging Initiative study and includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from the neuropsychological tests (Cog). The models developed herein delve into two main issues: (1) application merits of single-task vs. multitask for predicting future cognitive scores and (2) whether time-varying input data are better suited than specific timepoints for optimizing prediction results. This model yields a high of 90.27% (SD = 1.36) prediction accuracy (correlation) at 6 months after the initial visit to a lower 79.91% (SD = 8.84) prediction accuracy at 60 months. The analysis provided is comprehensive as it determines the predictions at all other timepoints and all MDNN models include converters in the CN and MCI groups (CNc, MCIc) and all the unstable groups in the CN and MCI groups (CNun and MCIun) that reverted to CN from MCI and to MCI from AD, so as not to bias the results. The results show that the best performance is achieved by a multimodal combined single-task long short-term memory (LSTM) regressor with an input sequence length of 2 data points (2 visits, 6 months apart) augmented with a pretrained Neural Network Estimator to fill in for the missing values. 
    more » « less
  4. The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N  = 351) and Alzheimer’s disease (AD, N  = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk. 
    more » « less
  5. Purpose Autistic individuals exhibit elevated rates of depression; however, assessment is complicated by clinical presenta- tions and limited validation in this population. Recent work has demonstrated the utility of the Beck Depression Inventory (BDI-II) in screening for depression in ASD. The current study extends this work by examining the convergence and diver- gence of self- and informant-reported depression in autistic (n = 258) and non-autistic (n = 255) young adults. Methods Participants completed the BDI-II as a self-report measure of depression; informants completed the Achenbach Adult Behavior Checklist. Analyses probed for between-group differences in rates of depression symptoms, convergence between self- and informant-reported depression, and discrepancy between self- and informant-reported depression. Results Results indicated significantly higher rates of depressive symptoms in the autistic group. Convergence was signifi- cant in both groups, with significantly greater agreement in the autistic group. There was differential divergence, with the autistic group reporting significantly lower scores relative to informants, and the non-autistic group reporting significantly higher scores relative to informants. Conclusions Consistent with prior reports, results suggest that depression rates are elevated in autism. Additionally, while the BDI-II may be adequate for screening depressive symptoms in speaking autistic young adults, eliciting information from a close adult informant provides valuable diagnostic information, due to clinically critical concerns about underreporting in this population. Although controlled in analyses, between-group differences in gender, age, race, and informant identity, and a predominantly White and non-Latinx sample, limit the generalizability of these results. 
    more » « less