skip to main content


Title: Work in Progress: Exploration of Student Learning in Online Maker Communities
Over the past decade, practices related to online learning have become increasingly varied and legitimated. Whether it be formal e-learning in K-12 or at colleges and universities or casual perusing of the internet, many people have found communities online to support their own endeavors. Recently, due to the Covid-19 pandemic most colleges and universities have been forced to shift partly or entirely to remote learning due to campus closures. Further, even in cases in which a campus is open, many universities have limited access to their makerspace due to social distancing and capacity requirements. In response, this Work in Progress study investigates how online making communities and resources are supporting student learning through making. Through in-depth phenomenologically-based interviews conducted both before and during the pandemic, this study offers rich insights into how students are learning from and engaging in online maker communities/resources as a central part of their development as a maker. Through qualitative data analysis, we develop a model for how students are learning online. These findings show the role digital spaces play in developing competent, inspired makers.  more » « less
Award ID(s):
1733678
NSF-PAR ID:
10356947
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference
ISSN:
0190-1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    CONTEXT With the onset of the COVID-19 pandemic, and the resulting response from universities, engineering students find themselves in an unprecedented situation. In addition to stressors related to the curriculum, residential students across the United States are being asked to relocate away from campus and engage in distance learning. At the same time, social distancing requirements are limiting students’ ability to socialize, procure food and supplies, exercise, and remain employed and financially solvent. Some students will fall ill while others face the prospect of sick family members, and even deaths in the family. Prior research suggests that individuals living through this pandemic are likely to face stress, uncertainty, and fear that affects their mental health and academic performance for years to come. PURPOSE OR GOAL The purpose of this study was to understand the ways in which the COVID-19 pandemic is affecting engineering students’ mental wellness, specifically stress, and how the effects differ for different groups of students. The research questions addressed are: 1) What effects has the pandemic had on baseline stress levels, and how do those vary by demographic group? 2) What effects has the pandemic had on quality of life, such as sleep habits and financial security, and how do those vary by demographic group? METHODS An online survey was conducted in the United States in May and June of 2020. More than 800 4-year engineering students who represented many engineering disciplines and universities responded. The survey used a modified version of the Holmes-Rahe Social Readjustment Rating Scale, which is a widely used and validated instrument to measure the effects of certain life events on stress. The data was analysed to determine the average increase in stress levels for students resulting from COVID-19, and which demographic groups have seen the most negative impact. We also report on which stress-inducing life-events were experienced most. OUTCOMES Latinx individuals and international students report statistically significantly higher levels of stress than the baseline population. Engineering students from other historically excluded identities, however,are not facing statistically significantly worse stress than their peers from historically over represented identities. Veterans fare better than the majority population on this metric.The data also indicates that different groups are more likely to experience different negative life-events because of COVID. CONCLUSIONS No previous research has examined the impacts of a global pandemic on engineering student stress and mental wellness. Our findings show that stress and mental wellness need to be understood intersectionally and that some underrepresented groups are disproportionately impacted by COVID-19. Understanding the impacts on students can help universities strategize and allocate limited resources most effectively to support student success. KEYWORDS Mental wellness; COVID-19; stress 
    more » « less
  2. Thought must be given to how individuals from underrepresented groups (URGs) conceptualize their academic engineering identities. Black male students have been shown to face a great challenge in integrating their racial identification into their self-concept. This “balancing act” involves the navigation and negotiation between multiple social spaces. The establishment of a positive identity associated with engineering is critical to how underrepresented students establish their sense of agency and overall “fit” within the institutional and/or professional setting. Yet, because of low numbers in participant populations, many studies fail to disaggregate the experiences of individuals from URGs. Further, if makerspaces represent an avenue of hope for fostering a generation of makers and innovative thinkers prepared to address the needs and challenges of our society, it is quite plausible that without careful attention we could be building another exclusionary system through makerspaces, grounded in the acceptance of Caucasian, male experiences and perceptions as the status quo. As making could potentially impact academic progression, through early exposure and opportunities to develop confidence through building, design, iteration and community, it is critical that we understand how all students, especially those from underrepresented groups, come to affiliate with, become alienated from and/or negotiate the cultural norms within these maker communities. To achieve this, it is necessary to explore the complexities of underrepresented students’ identity development. This study investigated the experiences of Black male engineering students that have also engaged in university-affiliated makerspaces as makers. Seven Black male students from a range of institution types, including Predominantly White Institutions (PWIs), Historically Black Colleges and Universities (HBCUs) and Asian American Native American Pacific Islander Institutions (AANAPI), participated in narrative interviews to ascertain stories of their personal growth and identity development. Engaging in makerspaces was found to promote agency and engineering identity for Black male undergraduates; however, makerspaces located at PWIs were found to reflect the heteronormative culture of engineering in a way that challenged smooth navigation in and through these spaces for Black men. 
    more » « less
  3. Background: Internships for college students can enhance their grades, skills, and employment prospects, but finding and completing an internship sometimes requires considerable resources. Consequently, before postsecondary institutions consider mandating this high-impact practice, more evidence is needed regarding the various obstacles students face as they seek an internship. Focus of Study: The purpose of this study was to document the prevalence and nature of obstacles to securing a college internship and how these factors interact in the lives of particular students. Field theory is used to highlight the ways that structural inequalities and forms of capital serve to facilitate or constrain access to an internship experience. Population: The participants in this study included students attending five postsecondary institutions—three comprehensive universities, one historically Black college and university (HBCU), and one technical college in the U.S. states of Maryland, South Carolina, and Wisconsin. Research Design: This concurrent mixed-methods study included the collection of survey (n = 1,549) and focus group and interview (n = 100) data from students who self-selected into the study. Given that this is a descriptive study, the aim was to document student experiences with obstacles to internships using varied sources of data. Data Collection and Analysis: Data were collected via an online survey (with a 26% response rate) and in-person focus groups or interviews at each campus. Data were analyzed using inductive thematic analysis, social network analysis, and logistic regression techniques and interpreted in ways that highlight the situated and critical role of capital and structure in shaping opportunity and behavior. Findings: Among the 1,060 (69%) survey respondents who reported not having had an internship, 638 indicated that they had in fact wanted to pursue an internship but could not because of the need to work, a heavy course load, insufficient positions, and inadequate pay. The role of financial, social, and cultural capital also impacted students differentially depending on their majors, socioeconomic status, race, and geographic location, highlighting how context and enduring systemic forces—and not solely the possession of capital(s)—intersect to shape students’ abilities to pursue an internship. Conclusion: Internships are not universally accessible to all college students and instead favor students who have access to financial, social, and cultural capital while also being positioned in particular majors, geographic locations, and institutions. Before actively promoting internships for their students, colleges and universities should secure funding to support student pay and relocation costs, identify alternative forms of experiential learning for working students, and engage employers in creating more in-person and online positions for students across the disciplines. 
    more » « less
  4. null (Ed.)
    Engineering instructors often use physical manipulatives such as foam beams, rolling cylinders, and large representations of axis systems to demonstrate mechanics concepts and help students visualize systems. Additional benefits are possible when manipulatives are in the hands of individual students or small teams of students who can explore concepts at their own pace and focus on their specific points of confusion. Online learning modalities require new strategies to promote spatial visualization and kinesthetic learning. Potential solutions include creating videos of the activities, using CAD models to demonstrate the principles, programming computer simulations, and providing hands-on manipulatives to students for at-home use. This Work-in-Progress paper discusses our experiences with this last strategy in statics courses two western community colleges and a western four-year university where we supplied students with their own hands-on kits. We have previously reported on the successful implementation of a hands-on statics kit consisting of 3D printed components and standard hardware. The kit was originally designed for use by teams of students during class to engage with topics such as vectors, moments, and rigid body equilibrium. With the onset of the COVID-19 pandemic and shift to online instruction, the first author developed a scaled down version of the kit for at-home use by individual students and modified the associated activity worksheets accordingly. For the community college courses, local students picked up their models at the campus bookstore. We also shipped some of the kits to students who were unable to come to campus, including some in other countries. Due to problems with printing and availability of materials, only 18 kits were available for the class of 34 students at the university implementation. Due to this circumstance, students were placed in teams and asked to work together virtually, one student showing the kit to the other student as they worked through the worksheet prompts. One community college instructor took this approach as well for a limited number of international students who did not receive their kits in a timely manner due to shipping problems. Two instructors assigned the hands-on kits as asynchronous learning activities in their respective online courses, with limited guidance on their use. The third used the kits primarily in synchronous online class meetings. We found that students’ reaction to the models varied by pilot site and presume that implementation differences contributed to this variation. In all cases, student feedback was less positive than it has been for face-to-face courses that used the models from which the take home kit was adapted. Our main conclusion is that implementation matters. Doing hands-on learning in an online course requires some fundamental rethinking about how the learning is structured and scaffolded. 
    more » « less
  5. Luo, Heng (Ed.)
    Online learning in higher education has been increasing for many years. This is happening across all of higher education and it is happening more specifically within STEM fields. The growth of online learning has significantly accelerated the past couple of years during the COVID-19 pandemic as colleges and universities have sought ways to continue educating students while also keeping students, faculty and staff safe. As result, many college faculty and instructors across all fields of study including STEM fields have made and continue to make the transition to teaching online for the first time. Teaching in an online environment is different from traditional classroom teaching in many ways and presents a unique set of challenges to college instructors. This study documents the development of an instrument used for instructors to self-report their instructional techniques and practices. Data from 251 instructors is also used to examine how this instrument can be used to better understand particular practices, with a focus in this study on discussion facilitation. The results align with the Community of Inquiry framework, including indicating that teaching through discussion forums involves direct contribution and/or facilitation. 
    more » « less