- Award ID(s):
- 2141751
- NSF-PAR ID:
- 10356960
- Date Published:
- Journal Name:
- Proceedings of the 39th International Conference on Machine Learning
- Volume:
- 162
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Autonomous agents in a multi-agent system work with each other to achieve their goals. However, In a partially observable world, current multi-agent systems are often less effective in achieving their goals. This limitation is due to the agents’ lack of reasoning about other agents and their mental states. Another factor is the agents’ inability to share required knowledge with other agents. This paper addresses the limitations by presenting a general approach for autonomous agents to work together in a multi-agent system. In this approach, an agent applies two main concepts: goal reasoning- to determine what goals to pursue and share; Theory of mind-to select an agent(s) for sharing goals and knowledge. We evaluate the performance of our multi-agent system in a Marine Life Survey Domain and compare it to another multi-agent system that randomly selects agent(s) to delegates its goals.more » « less
-
Abstract Collaboration requires agents to coordinate their behavior on the fly, sometimes cooperating to solve a single task together and other times dividing it up into sub‐tasks to work on in parallel. Underlying the human ability to collaborate is theory‐of‐mind (ToM), the ability to infer the hidden mental states that drive others to act. Here, we develop Bayesian Delegation, a decentralized multi‐agent learning mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer the hidden intentions of others by inverse planning. We test Bayesian Delegation in a suite of multi‐agent Markov decision processes inspired by cooking problems. On these tasks, agents with Bayesian Delegation coordinate both their high‐level plans (e.g., what sub‐task they should work on) and their low‐level actions (e.g., avoiding getting in each other's way). When matched with partners that act using the same algorithm, Bayesian Delegation outperforms alternatives. Bayesian Delegation is also a capable ad hoc collaborator and successfully coordinates with other agent types even in the absence of prior experience. Finally, in a behavioral experiment, we show that Bayesian Delegation makes inferences similar to human observers about the intent of others. Together, these results argue for the centrality of ToM for successful decentralized multi‐agent collaboration.
-
To achieve human-like common sense about everyday life, machine learning systems must understand and reason about the goals, preferences, and actions of other agents in the environment. By the end of their first year of life, human infants intuitively achieve such common sense, and these cognitive achievements lay the foundation for humans' rich and complex understanding of the mental states of others. Can machines achieve generalizable, commonsense reasoning about other agents like human infants? The Baby Intuitions Benchmark (BIB) challenges machines to predict the plausibility of an agent's behavior based on the underlying causes of its actions. Because BIB's content and paradigm are adopted from developmental cognitive science, BIB allows for direct comparison between human and machine performance. Nevertheless, recently proposed, deep-learning-based agency reasoning models fail to show infant-like reasoning, leaving BIB an open challenge.more » « less
-
Effective human-human and human-autonomy teamwork is critical but often challenging to perfect. The challenge is particularly relevant in time-critical domains, such as healthcare and disaster response, where the time pressures can make coordination increasingly difficult to achieve and the consequences of imperfect coordination can be severe. To improve teamwork in these and other domains, we present TIC: an automated intervention approach for improving coordination between team members. Using BTIL, a multi-agent imitation learning algorithm, our approach first learns a generative model of team behavior from past task execution data. Next, it utilizes the learned generative model and team's task objective (shared reward) to algorithmically generate execution-time interventions. We evaluate our approach in synthetic multi-agent teaming scenarios, where team members make decentralized decisions without full observability of the environment. The experiments demonstrate that the automated interventions can successfully improve team performance and shed light on the design of autonomous agents for improving teamwork.more » « less
-
Relevance to proposal: This project evaluates the generalizability of real and synthetic training datasets which can be used to train model-free techniques for multi-agent applications. We evaluate different methods of generating training corpora and machine learning techniques including Behavior Cloning and Generative Adversarial Imitation Learning. Our results indicate that the utility-guided selection of representative scenarios to generate synthetic data can have significant improvements on model performance. Paper abstract: Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds.more » « less