Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Theory of mind, the ability to model others’ thoughts and desires, is a cornerstone of human social intelligence. This makes it an important challenge for the machine learning community, but previous works mainly attempt to design agents that model the "mental state" of others as passive observers or in specific predefined roles, such as in speaker-listener scenarios. In contrast, we propose to model machine theory of mind in a more general symmetric scenario. We introduce a multi-agent environment SymmToM where, like in real life, all agents can speak, listen, see other agents, and move freely through the world. Effective strategies to maximize an agent’s reward require it to develop a theory of mind. We show that reinforcement learning agents that model the mental states of others achieve significant performance improvements over agents with no such theory of mind model. Importantly, our best agents still fail to achieve performance comparable to agents with access to the gold-standard mental state of other agents, demonstrating that the modeling of theory of mind in multi-agent scenarios is very much an open challenge.more » « less
-
Children do not learn language from passively analyzing correlations between language and observations, but from interaction with caregivers or peers. The non-nativist approach claims that the main driver of language learning should be to achieve communicative goals. Imitation, on the other hand, is another natural desire that many argue influences language learning. However, there are still gaps in the research on what roles communicative goals and imitating linguistic input play in language acquisition, due to the difficulty of performing comprehensive experiments with human learners. In this paper, we propose a computational framework using simulated experiments that allows us to compare the roles of the two drivers. Specifically, we simulate a two-way communication game between a speaker, corresponding to a language learner, and a listener, corresponding to a caregiver or teacher. The speaker's communicative goals are modeled as rewards for successful completion of a referential game, and imitation is performed by mimicking feedback from the listener. The listener adaptively chooses to give feedback and makes choices based on the speaker's utterances. With empirical results on naturalistic visual and language data, we find that communicative goals play an important role in driving language learning, whereas imitation accelerates the learning process. We also find that (1) models trained with communicative goals tend to use minimal vocabulary and utterances and overextend them to concepts outside the original word meanings; (2) the strategy with which the listener provides feedback also influences the learning results and speed. Code and data for replicating the experiments are available (https://bit.ly/interactgym) to spur future research on models for computational studies of language learning.more » « less
An official website of the United States government

Full Text Available