- Award ID(s):
- 1831918
- Publication Date:
- NSF-PAR ID:
- 10356993
- Journal Name:
- JMIR Formative Research
- Volume:
- 5
- Issue:
- 11
- Page Range or eLocation-ID:
- e30991
- ISSN:
- 2561-326X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Continuous monitoring of perinatal women in a descriptive case study allowed us the opportunity to examine the time during which the COVID-19 infection led to physiological changes in two low-income pregnant women. An important component of this study was the use of a wearable sensor device, the Oura ring, to monitor and record vital physiological parameters during sleep. Two women in their second and third trimesters, respectively, were selected based on a positive COVID-19 diagnosis. Both women were tested using the polymerase chain reaction method to confirm the presence of the virus during which time we were able to collect these physiological data. In both cases, we observed 3–6 days of peak physiological changes in resting heart rate (HR), heart rate variability (HRV), and respiratory rate (RR), as well as sleep surrounding the onset of COVID-19 symptoms. The pregnant woman in her third trimester showed a significant increase in resting HR ( p = 0.006) and RR ( p = 0.048), and a significant decrease in HRV ( p = 0.027) and deep sleep duration ( p = 0.029). She reported experiencing moderate COVID-19 symptoms and did not require hospitalization. At 38 weeks of gestation, she had a normal deliverymore »
-
Ryckman, Kelli K (Ed.)Background Technology enables the continuous monitoring of personal health parameter data during pregnancy regardless of the disruption of normal daily life patterns. Our research group has established a project investigating the usefulness of an Internet of Things–based system and smartwatch technology for monitoring women during pregnancy to explore variations in stress, physical activity and sleep. The aim of this study was to examine daily patterns of well-being in pregnant women before and during the national stay-at-home restrictions related to the COVID-19 pandemic in Finland. Methods A longitudinal cohort study design was used to monitor pregnant women in their everyday settings. Two cohorts of pregnant women were recruited. In the first wave in January-December 2019, pregnant women with histories of preterm births (gestational weeks 22–36) or late miscarriages (gestational weeks 12–21); and in the second wave between October 2019 and March 2020, pregnant women with histories of full-term births (gestational weeks 37–42) and no pregnancy losses were recruited. The final sample size for this study was 38 pregnant women. The participants continuously used the Samsung Gear Sport smartwatch and their heart rate variability, and physical activity and sleep data were collected. Subjective stress, activity and sleep reports were collected using amore »
-
Background Assessment of sleep quality is essential to address poor sleep quality and understand changes. Owing to the advances in the Internet of Things and wearable technologies, sleep monitoring under free-living conditions has become feasible and practicable. Smart rings and smartwatches can be employed to perform mid- or long-term home-based sleep monitoring. However, the validity of such wearables should be investigated in terms of sleep parameters. Sleep validation studies are mostly limited to short-term laboratory tests; there is a need for a study to assess the sleep attributes of wearables in everyday settings, where users engage in their daily routines. Objective This study aims to evaluate the sleep parameters of the Oura ring along with the Samsung Gear Sport watch in comparison with a medically approved actigraphy device in a midterm everyday setting, where users engage in their daily routines. Methods We conducted home-based sleep monitoring in which the sleep parameters of 45 healthy individuals (23 women and 22 men) were tracked for 7 days. Total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) of the ring and watch were assessed using paired t tests, Bland-Altman plots, and Pearson correlation. The parameters were also investigated considering themore »
-
The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other basedmore »
-
Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performancemore »