skip to main content


Title: Are Terrestrial Biological Invasions Different in the Tropics?
Most biological invasion literature—including syntheses and meta-analyses and the resulting theory—is reported from temperate regions, drawing only minimally from the tropics except for some island systems. The lack of attention to invasions in the tropics results from and reinforces the assumption that tropical ecosystems, and especially the continental tropics, are more resistant to invasions. We have critically assessed biological invasions in the tropics and compared them with temperate regions, finding relatively weak evidence that tropical and temperate regions differ in their invasibility and in the traits that determine invader success and impacts. Propagule pressure and the traits that promote adaptation to disturbances (e.g., high fecundity or fast growth rates) are generally favorable to invasions in both tropical and temperate regions. We emphasize the urgent need for greater investment and regional cooperation in the study, prevention, and management of biological invasions in the tropics.  more » « less
Award ID(s):
1638702
NSF-PAR ID:
10357027
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Annual Review of Ecology, Evolution, and Systematics
Volume:
52
Issue:
1
ISSN:
1543-592X
Page Range / eLocation ID:
291 to 314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Adult survival is central to theories explaining latitudinal gradients in life history strategies. Life history theory predicts higher adult survival in tropical than north temperate regions given lower fecundity and parental effort. Early studies were consistent with this prediction, but standard‐effort netting studies in recent decades suggested that apparent survival rates in temperate and tropical regions strongly overlap. Such results do not fit with life history theory. Targeted marking and resighting of breeding adults yielded higher survival estimates in the tropics, but this approach is thought to overestimate survival because it does not sample social and age classes with lower survival. We compared the effect of field methods on tropical survival estimates and their relationships with life history traits.

    Location

    Sabah, Malaysian Borneo.

    Time period

    2008–2016.

    Major taxon

    Passeriformes.

    Methods

    We used standard‐effort netting and resighted individuals of all social and age classes of 18 tropical songbird species over 8 years. We compared apparent survival estimates between these two field methods with differing analytical approaches.

    Results

    Estimated detection and apparent survival probabilities from standard‐effort netting were similar to those from other tropical studies that used standard‐effort netting. Resighting data verified that a high proportion of individuals that were never recaptured in standard‐effort netting remained in the study area, and many were observed breeding. Across all analytical approaches, addition of resighting yielded substantially higher survival estimates than did standard‐effort netting alone. These apparent survival estimates were higher than for temperate zone species, consistent with latitudinal differences in life histories. Moreover, apparent survival estimates from addition of resighting, but not from standard‐effort netting alone, were correlated with parental effort as measured by egg temperature across species.

    Main conclusions

    Inclusion of resighting showed that standard‐effort netting alone can negatively bias apparent survival estimates and obscure life history relationships across latitudes and among tropical species.

     
    more » « less
  2. null (Ed.)
    The tropical conservatism hypothesis (TCH) posits that the latitudinal gradient in biological diversity arises because most extant clades of animals and plants originated when tropical environments were more widespread and because the colonization of colder and more seasonal temperate environments is limited by the phylogenetically conserved environmental tolerances of these tropical clades. Recent studies have claimed support of the TCH, indicating that temperate plant diversity stems from a fewmore recently derived lineages that are nested within tropical clades, with the colonization of the temperate zone being associated with key adaptations to survive colder temperatures and regular freezing. Drought, however, is an additional physiological stress that could shape diversity gradients. Here, we evaluate patterns of evolutionary diversity in plant assemblages spanning the full extent of climatic gradients in North and South America. We find that in both hemispheres, extratropical dry biomes house the lowest evolutionary diversity, while tropical moist forests and many temperatemixed forests harbor the highest. Together, our results support a more nuanced view of the TCH, with environments that are radically different from the ancestral niche of angiosperms having limited, phylogenetically clustered diversity relative to environments that show lower levels of deviation from this niche. Thus, we argue that ongoing expansion of arid environments is likely to entail higher loss of evolutionary diversity not just in the wet tropics but in many extratropical moist regions as well. 
    more » « less
  3. Plant phenology has been shifting dramatically in response to climate change, a shift that may have significant and widespread ecological consequences. Of particular concern are tropical biomes, which represent the most biodiverse and imperiled regions of the world. However, compared to temperate floras, we know little about phenological responses of tropical plants because long-term observational datasets from the tropics are sparse. Herbarium specimens have greatly increased our phenological knowledge in temperate regions, but similar data have been underutilized in the tropics and their suitability for this purpose has not been broadly validated. Here, we compare phenological estimates derived from field observational data (i.e., plot surveys) and herbarium specimens at various spatial and taxonomic scales to determine whether specimens can provide accurate estimations of reproductive timing and its spatial variation. Here we demonstrate that phenological estimates from field observations and herbarium specimens coincide well. Fewer than 5% of the species exhibited significant differences between flowering periods inferred from field observations versus specimens regardless of spatial aggregation. In contrast to studies based on field records, herbarium specimens sampled much larger geographic and climatic ranges, as has been documented previously for temperate plants, and effectively captured phenological responses across varied environments. Herbarium specimens are verified to be a vital resource for closing the gap in our phenological knowledge of tropical systems. Tropical plant reproductive phenology inferred from herbarium records are widely congruent with field observations, suggesting that they can (and should) be used to investigate phenological variation and their associated environmental cues more broadly across tropical biomes. 
    more » « less
  4. Abstract Aim

    Historical processes that shaped current diversity patterns of seaweeds remain poorly understood. Using Dictyotales, a globally distributed order of brown seaweeds as a model, we test if historical biogeographical and diversification patterns are comparable across clades. Dictyotales contain some 22 genera, three of which,Dictyota,LobophoraandPadina, are exceptionally diverse. Specifically, we test whether the evolutionary processes that shaped the latitudinal diversity patterns in these clades are in line with the tropical conservatism, out‐of‐the‐tropics or diversification rate hypotheses.

    Location

    Global coastal benthic marine environments.

    Taxon

    Dictyotales (Phaeophyceae).

    Methods

    Species diversity was inferred using DNA‐based species delineation, addressing cryptic diversity and circumventing taxonomic problems. A six‐gene time‐calibrated phylogeny, distribution data of 3,755 specimens and probabilistic modelling of geographical range evolution were used to infer historical biogeographical patterns. The phylogeny was tested against different trait‐dependent models to compare diversification rates for different geographical units as well as different thermal affinities.

    Results

    Our results indicate that Dictyotales originated in the Middle Jurassic and reach a current peak of species diversity in the Central Indo‐Pacific. Ancestral range estimation points to a southern hemisphere origin of Dictyotales corresponding to the tropical southern Tethys Sea. Our results demonstrate that diversification rates were generally higher in tropical regions, but increased diversification rates in different clades are driven by different processes. Our results suggest that three major clades underwent a major diversification burst in the early Cenozoic, withDictyotaandPadinaexpanding their distribution into temperate regions whileLobophoraretained a predominantly tropical niche.

    Main conclusions

    Our results are consistent with both the tropical conservatism hypothesis, in which clades originate and remain in the tropics (Lobophora), and the out‐of‐the‐tropics scenario, where taxa originate and expand towards the temperate regions while preserving their presence in the tropics (Dictyota,Padina).

     
    more » « less
  5. Species richness is greatest in the tropics, and much of this diversity is concentrated in mountains. Janzen proposed that reduced seasonal temperature variation selects for narrower thermal tolerances and limited dispersal along tropical elevation gradients [Janzen DH (1967)Am Nat101:233–249]. These locally adapted traits should, in turn, promote reproductive isolation and higher speciation rates in tropical mountains compared with temperate ones. Here, we show that tropical and temperate montane stream insects have diverged in thermal tolerance and dispersal capacity, two key traits that are drivers of isolation in montane populations. Tropical species in each of three insect clades have markedly narrower thermal tolerances and lower dispersal than temperate species, resulting in significantly greater population divergence, higher cryptic diversity, higher tropical speciation rates, and greater accumulation of species over time. Our study also indicates that tropical montane species, with narrower thermal tolerance and reduced dispersal ability, will be especially vulnerable to rapid climate change.

     
    more » « less